
FEBRUARY 06, 2024

ZUNAMI SMART

CONTRACTS

SECURITY

AUDIT REPORT

2

CONTENTS

1. INTRO .. 4

1.1. DISCLAIMER ... 5

1.2. ABOUT OXORIO ... 6

1.3. SECURITY ASSESSMENT METHODOLOGY .. 7

1.4. FINDINGS CLASSIFICATION .. 8

Severity Level Reference .. 8

Status Level Reference ... 8

1.5. PROJECT OVERVIEW .. 9

Documentation ... 9

1.6. AUDIT SCOPE ... 10

2. FINDINGS REPORT ... 11

2.1. CRITICAL ... 12

C-01 No access control for deposit function call in VaultStrat ... 12

C-02 Blocking execution of inflate and deflate functions in ConvexCurveStratBase 15

C-03 Elevated price in USD in the getLiquidityTokenPrice function leads to money theft from the

pool in ZunamiStratBase .. 16

C-04 Price-feed returns ETH price in FrxETHOracle .. 20

2.2. MAJOR .. 21

M-01 Latency of APS logic in CrvUsdApsConvexCurveStratBase, FraxApsConvexCurveStratBase . 21

M-02 Array out of bounds in _setTokens when deleting tokens in ZunamiPool 22

2.3. WARNING ... 23

W-01 High slippage in CrvUsdApsConvexCurveStratBase, FraxApsConvexCurveStratBase 23

W-02 Underflow in case of depositedValue is lower than MINIMUM_LIQUIDITY on the first deposit

to the strategy in ZunamiPool .. 25

2.4. INFO .. 26

I-01 Inflation attack in ZunamiPool ... 26

3

I-02 Redundant extension of the AccessControl contract to check two roles at once in

AccessControl2RolesValuation ... 27

I-03 Parameter validation ... 28

I-04 Using constant in CurveStratBase .. 30

I-05 High decimals tokens support in ZunamiStratBase ... 31

I-06 Floating pragma .. 32

3. CONCLUSION .. 33

INTRO

1

INTRO 5

1.1 DISClAIMER

The audit makes no assertions or warranties about the utility of the code, its security, the

suitability of the business model, investment advice, endorsement of the platform or its

products, the regulatory regime for the business model, or any other statements about the

fitness of the contracts for their intended purposes, or their bug-free status. The audit

documentation is for discussion purposes only.

INTRO 6

1.2 ABOUT OxORIO

Oxorio is a prominent audit and consulting firm in the blockchain industry, offering top-tier

security audits and consulting to organizations worldwide. The company's expertise stems

from its active involvement in designing and deploying multiple blockchain projects, wherein

it developed and analyzed smart contracts.

With a team of more than six dedicated blockchain specialists, Oxorio maintains a strong

commitment to excellence and client satisfaction. Its contributions to several blockchain

projects reflect the company's innovation and influence in the industry. Oxorio's

comprehensive approach and deep blockchain understanding make it a trusted partner for

organizations in the sector.

Contact details:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

INTRO 7

1.3 SECURITY ASSESSMENT

METhODOlOgY

Several auditors work on this audit, each independently checking the provided source code

according to the security assessment methodology described below:

1. Project architecture review

The source code is manually reviewed to find errors and bugs.

2. Code check against known vulnerabilities list

The code is verified against a constantly updated list of known vulnerabilities maintained by

the company.

3. Security model architecture and structure check

The project documentation is reviewed and compared with the code, including examining

the comments and other technical papers.

4. Cross-check of results by different auditors

The project is typically reviewed by more than two auditors. This is followed by a mutual

cross-check process of the audit results.

5. Report consolidation

The audited report is consolidated from multiple auditors.

6. Re-audit of new editions

After the client has reviewed and fixed the issues, these are double-checked. The results are

included in a new version of the audit.

7. Final audit report publication

The final audit version is provided to the client and also published on the company's official

website.

INTRO 8

1.4 FINDINgS ClASSIFICATION

1.4.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

CRITICAL: A bug that could lead to asset theft, inaccessible locked funds, or any other

fund loss due to unauthorized party transfers.

MAJOR: A bug that could cause a contract failure, with recovery possible only through

manual modification of the contract state or replacement.

WARNING: A bug that could break the intended contract logic or expose it to DDoS

attacks.

INFO: A minor issue or recommendation reported to or acknowledged by the client's

team.

1.4.2 Status Level Reference

Based on the client team's feedback regarding the list of findings discovered by the

contractor, the following statuses were assigned to the findings:

NEW: Awaiting feedback from the project team.

FIXED: The recommended fixes have been applied to the project code, and the identified

issue no longer affects the project's security.

ACKNOWLEDGED: The project team is aware of this finding. Fixes for this finding are

planned. This finding does not affect the overall security of the project.

NO ISSUE: The finding does not affect the overall security of the project and does not

violate its operational logic.

INTRO 9

1.5 PROjECT OvERvIEw

Zunami is a decentralized protocol that issues aggregated stablecoins, whose collateral is

utilized in omnipools and differentiated among various profit-generating strategies. The

protocol creates Omni pools and issue zunStables on top of them. Protocol launches two

aggregated stablecoins - zunUSD and zunETH.

The Omni pool operates as a Yield Aggregator by providing liquidity to the multiple

strategies and reinvesting profits. Each zunStable is backed by its own Omni pool, managed

through DAO governance. The DAO manages the addition of new strategies and the

rebalancing of funds between strategies.

1.5.1 Documentation

For this audit, the following sources of truth about how the smart contracts should work

were used:

main GitHub repository of the project.

The sources were considered to be the specification. In the case of discrepancies with the

actual code behavior, consultations were held directly with the client team.

INTRO 10

1.6 AUDIT SCOPE

The scope of the audit includes smart contracts at contracts folder except files at

distributor and staking subfolders of the project repository.

The audited commit identifiers:

initial commit 8bc108201bef8c4d341ecd3a29a3b1d975019cec

audit fixes 9ffa8e1b6128d1ade8459a4e492cee669ed241a1

reaudit fixes 79892fe12bec407d3d9706c19cd421d458263c0c

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/distributor
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/distributor
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/79892fe12bec407d3d9706c19cd421d458263c0c/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/79892fe12bec407d3d9706c19cd421d458263c0c/

FINDINgS

REPORT2

FINDINgS REPORT 12

2.1 CRITICAl

Location

Description

The deposit function of the VaultStrat contract has an external visibility modifier and

can be called by any address without permissions. An attacker can make a fake deposit to

the VaultStrat contract by directly calling the deposit function without any token value.

This leads to incorrect computation of the withdrawal value during withdrawal from the

strategy. The process can be exploited as follows:

Honest users deposit to VaultStrat through the controller.

The attacker makes a low deposit to VaultStrat through the controller.

The attacker makes a fake deposit to VaultStrat directly.

The attacker withdraws all funds from VaultStrat through the controller.

 it('open deposit method in VaultStrat', async () => {

 const {

 alice,

 bob,

 zunamiPool,

 zunamiPoolController,

 strategies,

 usdt,

 } = await loadFixture(deployFixture);

 // add VaultStrat to zunamiPoolController

 const strategy = strategies[0];

C-01
No access control for deposit function call in

VaultStrat

Severity CRITICAL

Status • FIXED

File Location Line

VaultStrat.sol contract VaultStrat > function deposit 30

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/VaultStrat.sol#L30

FINDINgS REPORT 13

 await zunamiPool.addStrategy(strategy.address);

 await zunamiPoolController.setDefaultDepositSid(0);

 await zunamiPoolController.setDefaultWithdrawSid(0);

 // Alice deposits 100 to VaultStrat

 await expect(

 zunamiPoolController

 .connect(alice)

 .deposit(getMinAmountZunUSD('100'), alice.getAddress())

).to.emit(zunamiPool, 'Deposited');

 // Bob deposits 100 to VaultStrat

 await expect(

 zunamiPoolController

 .connect(bob)

 .deposit(getMinAmountZunUSD('100'), bob.getAddress())

).to.emit(zunamiPool, 'Deposited');

 // Bob makes fake deposit to VaultStrat

 await strategy.connect(bob).deposit(getMinAmountZunUSD('200'))

 // Bob withdraws 200 from VaultStrat

 let balanceBefore = BigNumber.from(await usdt.balanceOf(bob.getAddress()));

 let sharesAmount = BigNumber.from(

 await zunamiPool.balanceOf(bob.getAddress())

);

 await zunamiPool.connect(bob).approve(zunamiPoolController.address, sharesAmount);

 await expect(

 zunamiPoolController.connect(bob).withdraw(sharesAmount, [0, 0, 0, 0, 0],

bob.getAddress())

).to.emit(zunamiPool, 'Withdrawn');

 expect(

 BigNumber.from(await usdt.balanceOf(bob.getAddress())).sub(balanceBefore)

).to.eq(ethers.utils.parseUnits('200', 'mwei'));

 });

Recommendation

We recommend adding access control for the deposit function.

FINDINgS REPORT 14

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 15

Location

Description

In the depositBooster function of the ConvexCurveStratBase contract, the allowance is

increased by an amount that may be insufficient for the subsequent call to depositAll .

This issue arises during the call to depositAll in Convex, where a deposit is made for the

entire balance of the strategy:

uint256 balance = IERC20(lptoken).balanceOf(msg.sender);

deposit(_pid, balance, _stake);

This leads to a problem where, if there are LP tokens on the strategy contract, calling the

inflate and deflate functions can result in an error due to insufficient allowance in the

depositBooster function.

Additionally, it is possible to frontrun transactions calling the inflate and deflate

functions, blocking their execution by adding a small amount of LP tokens to the strategy

contract.

Recommendation

We recommend considering the replacement of the depositAll function call with a call to

the deposit function, explicitly specifying the amount .

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

C-02
Blocking execution of inflate and deflate

functions in ConvexCurveStratBase

Severity CRITICAL

Status • FIXED

File Location Line

ConvexCurveStratBase.sol contract ConvexCurveStratBase > function depositBooster 32

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/ConvexCurveStratBase.sol#L32
https://github.com/convex-eth/platform/blob/main/contracts/contracts/Booster.sol#L289
https://github.com/convex-eth/platform/blob/main/contracts/contracts/Booster.sol#L289
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 16

Location

Description

In the deposit function of the ZunamiStratBase contract, the cost of Curve pool LP tokens

in USD is determined based on the current price received from the oracle. This value is then

used in the processSuccessfulDeposit function for minting shares. The issue arises

because a higher current price of the LP token results in a larger share of the total LP tokens

for a user, while the price change does not impact the shares of previous users.

In the strategy, within the deposit function, liquidity is deposited into the Curve pool,

which returns LP tokens. The amount of these LP tokens is set in the depositedLiquidity

variable. Finally, the USD value of the LP tokens is returned to zunamiPool , calculated

based on the current price provided by the oracle:

function deposit(uint256[POOL_ASSETS] memory amounts) external returns (uint256) {

 // ...

 uint256 liquidity = depositLiquidity(amounts);

 depositedLiquidity += liquidity;

 return calcLiquidityValue(liquidity);

}

In zunamiPool , shares are minted based on the USD value of this LP tokens. However,

these new shares are allocated without considering the USD value of previously minted

shares in the pool according to the new price:

 // ...

 minted =

 ((totalSupply() + 10 ** _decimalsOffset()) * depositedValue) /

C-03

Elevated price in USD in the

getLiquidityTokenPrice function leads to money

theft from the pool in ZunamiStratBase

Severity CRITICAL

Status • FIXED

File Location Line

ZunamiStratBase.sol contract ZunamiStratBase > function deposit 71

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/ZunamiStratBase.sol#L71

FINDINgS REPORT 17

 (totalDeposited + 1);

}

_mint(receiver, minted - locked);

_strategyInfo[sid].minted += minted;

totalDeposited += depositedValue;

For example:

1) The first user deposits 10000 zunUSD , the strategy is receiving 10000 LP tokens from the

Curve pool. These LP tokens are recorded in the strategy in the depositedLiquidity

variable. The cost of these LP tokens in USD, as returned from the oracle, is assumed to be 1

USD per token:

 getLiquidityTokenPrice = 1 (USD)

 strategy.depositedLiquidity = 10000 (LP)

 zunamiPool.minted = 10000 (shares)

 zunamiPool.totalDeposited = 10000 (USD)

2) A second user deposits 1000 zunUSD , the strategy is receiving 1000 LP tokens. If the

price per LP token has risen to 1.2 USD, the deposit function returns 1200 USD. The

shares in zunamiPool remain unchanged due to the LP token price change:

 getLiquidityTokenPrice = 1.2 (USD)

 strategy.depositedLiquidity = 11000 (LP)

 zunamiPool.minted = 11200 (shares)

 zunamiPool.totalDeposited = 11200 (USD)

3) The second user withdraws their 1200 shares. The calcRatioSafe function determines

the user's claim to be 1200/11200 = 0.107 of strategy.depositedLiquidity , equating

to 0.107 * 11000 = 1177 LP tokens. Exchanging these tokens in the Curve pool yields

1177 zunUSD :

 strategy.depositedLiquidity = 9823 (LP)

 zunamiPool.minted = 10000 (shares)

 zunamiPool.totalDeposited = 10000 (USD)

As a result, the second user profits 177 zunUSD from the deposit and withdraw

functions, causing a loss for the first user.

FINDINgS REPORT 18

Recommendation

We recommend adjusting the allocation of new shares during a deposit in zunamiPool to

consider the current value of shares in USD.

Update

Zunami's response

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

Oxorio's response

Made solution not fully fixes bug scenario in case of ThroughController usage:

1) The first user deposits 10000 DAI , the strategy is receiving 10000 LP tokens from the

Curve pool. These LP tokens are recorded in the strategy in the depositedLiquidity

variable. The cost of these LP tokens in USD, as returned from the oracle, is assumed to be 1

USD per token:

 getLiquidityTokenPrice = 1 (USD)

 strategy.depositedLiquidity = 10000 (LP)

 zunamiPool.minted = 10000 (shares)

 zunamiPool.totalDeposited = 10000 (USD)

2) A second user deposits 1000 DAI , the strategy is receiving 1000 LP tokens. If the price

per LP token has risen to 1.2 USD, the deposit function returns 1200 USD. Also, the new

extraGains logic of zunamiPool mints 2000 new shares to the pool address:

 getLiquidityTokenPrice = 1.2 (USD)

 strategy.depositedLiquidity = 11000 (LP)

 zunamiPool.minted = 13200 = 10000 + 2000 (new shares for pool) + 1200 (new shares for

depositer)

 zunamiPool.totalDeposited = 13200 (USD)

3) Let's assume that the price spike of DAI was short-lived and after a while, the price

returned to 1 dollar. The first user withdraws their 10000 shares. The calcRatioSafe

function determines the user's claim to be 10000/13200 = 0.758 of

strategy.depositedLiquidity , equating to 0.758 * 11000 = 8338 LP tokens.

Exchanging these tokens in the Curve pool yields 8338 DAI :

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 19

 strategy.depositedLiquidity = 2662 (LP)

 zunamiPool.minted = 3200 (shares)

 zunamiPool.totalDeposited = 3200 (USD)

As a result, the first user loses 1662 DAI from the deposit and withdraw function calls.

Also, the new extraGains logic mints shares at a 1 to 1 rate:

 uint256 gains = currentTotalHoldings - totalDeposited;

 extraGains += gains;

 totalDeposited += gains;

 extraGainsMintedBlock = block.number;

 _mint(address(this), gains);

But as the pool contract implements defense from inflation attack, it mints shares in a

shifted rate during deposit:

 minted = ((totalSupply() + 10 ** _decimalsOffset()) * depositedValue) / (totalDeposited

+ 1);

 ...

 _mint(receiver, minted);

We recommend using the same shifted rate for minting in the extraGains logic.

Zunami's second response

Fixed in commit 79892fe12bec407d3d9706c19cd421d458263c0c .

In the current architecture, a protocol has capital stored in strategies. Essentially, investing

capital through the pool, the protocol mint own zun stablecoins in return. The capital the

protocol held earns the rewards and the yield in the base scenario. Currently, the DAO

explicitly withdraws the rewards and converts capital growth into zun stablecoins for

withdrawal as well. In other words, it's the normal operation mode of the protocol where it

constantly gains capital growth. However, in the event of a force majeure and if the protocol

has an unsuccessful strategy where the token in which the capital is stored in an external

protocol drops in price (for example, Curve LP token), the DAO initiate a recapitalization

procedure to restore 100% backing selling stacked zun stablecoin and collected rewards. In

the protocol, the period between losing full backing of own stablecoin with capital and its

restoration is a standard procedure that cannot be fixed algorithmically because the

problem lies in the external protocol, which has become imbalanced. And yes, users take on

the risk that in the event of exiting the zunami pool (omni or APS), they may lose funds if

capital is lost in an external project before the recapitalization happens.

https://github.com/ZunamiProtocol/ZunamiProtocolV2/blob/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/contracts/ZunamiPool.sol#L140
https://github.com/ZunamiProtocol/ZunamiProtocolV2/blob/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/contracts/ZunamiPool.sol#L236
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/79892fe12bec407d3d9706c19cd421d458263c0c/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/79892fe12bec407d3d9706c19cd421d458263c0c/

FINDINgS REPORT 20

Location

Description

In the contract FrxETHOracle the oracle requests the price for ETH instead of the price of

frxETH . frxETH peg is defined as 1% on each side of 1.00 exchange rate meaning the

frxETH exchange rate rests between 1.01-0.99 ETH per 1 frxETH . In case of depeg,

oracle will return incorrect value.

Recommendation

We recommend changing the code to return the correct price of frxETH .

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

C-04 Price-feed returns ETH price in FrxETHOracle

Severity CRITICAL

Status • FIXED

File Location Line

FrxETHOracle.sol contract FrxETHOracle 27

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/lib/ConicOracle/contracts/oracles/FrxETHOracle.sol#L27
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 21

2.2 MAjOR

Location

Description

The functions inflate and deflate in the contracts CrvUsdApsConvexCurveStratBase

and FraxApsConvexCurveStratBase can only be called by the DAO. The DAO mechanism

involves significant latency between the start of voting and the execution of proposals. For

instance, if the governance voting period is 7 days, then all APS strategy functions (inflate

and deflate) are executed with a 7-day delay. This could lead to the temporary depegging

of the zunUSD token.

Recommendation

We recommend implementing an emergency APS mechanism that can be activated without

any latency.

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

M-01
Latency of APS logic in CrvUsdApsConvexCurveStratBase ,

FraxApsConvexCurveStratBase

Severity MAJOR

Status • FIXED

File Location Line

CrvUsdApsConvexCurveStratBase.sol
contract CrvUsdApsConvexCurveStratBase > function

inflate
90

CrvUsdApsConvexCurveStratBase.sol
contract CrvUsdApsConvexCurveStratBase > function

deflate
125

FraxApsConvexCurveStratBase.sol
contract FraxApsConvexCurveStratBase > function

inflate
91

FraxApsConvexCurveStratBase.sol
contract FraxApsConvexCurveStratBase > function

deflate
121

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvUSD/CrvUsdApsConvexCurveStratBase.sol#L90
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvUSD/CrvUsdApsConvexCurveStratBase.sol#L125
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvFrax/FraxApsConvexCurveStratBase.sol#L91
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvFrax/FraxApsConvexCurveStratBase.sol#L121
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 22

Location

Description

In the _setTokens function of the ZunamiPool contract, there is a potential for an array

out-of-bounds error when attempting to delete more tokens than were initially set.

The function operates by setting or removing tokens from the array across POOL_ASSETS

iterations. Consider the following sequence:

Initially, the _setTokens function sets the token count equal to POOL_ASSETS .

Subsequently, a number of tokens equal to POOL_ASSETS-3 is passed to _setTokens ,

resulting in the removal of three tokens from the _tokens array.

If _setTokens is then called to set a token count of POOL_ASSETS-2 , an array out-of-

bounds error will occur in the _tokens array.

Recommendation

We recommend revising the token deletion logic in _setTokens to ensure it does not

attempt to delete more elements than are present in the array.

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

M-02
Array out of bounds in _setTokens when deleting

tokens in ZunamiPool

Severity MAJOR

Status • FIXED

File Location Line

ZunamiPool.sol contract ZunamiPool > function _setTokens 88

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/ZunamiPool.sol#L88
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 23

2.3 wARNINg

Location

Description

The functions inflate and deflate in the contracts CrvUsdApsConvexCurveStratBase

and FraxApsConvexCurveStratBase use the minDeflateAmount parameter, which limits

slippage and is valued in USD, set in advance as a function parameter. This could lead to

transaction reversion if the limit is too low or result in high slippage.

Recommendation

We recommend refactoring the slippage limitation mechanism of the APS strategies.

Update

Oxorio's response

We recommend implementing a percent-based slippage mechanism instead of a fixed value

slippage in USD, to ensure that the slippage logic does not depend on fluctuations in the

price of the asset used.

W-01
High slippage in CrvUsdApsConvexCurveStratBase ,

FraxApsConvexCurveStratBase

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

CrvUsdApsConvexCurveStratBase.sol
contract CrvUsdApsConvexCurveStratBase > function

inflate
90

CrvUsdApsConvexCurveStratBase.sol
contract CrvUsdApsConvexCurveStratBase > function

deflate
125

FraxApsConvexCurveStratBase.sol
contract FraxApsConvexCurveStratBase > function

inflate
91

FraxApsConvexCurveStratBase.sol
contract FraxApsConvexCurveStratBase > function

deflate
121

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvUSD/CrvUsdApsConvexCurveStratBase.sol#L90
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvUSD/CrvUsdApsConvexCurveStratBase.sol#L125
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvFrax/FraxApsConvexCurveStratBase.sol#L91
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvFrax/FraxApsConvexCurveStratBase.sol#L121

FINDINgS REPORT 24

For example:

The zunUSD price is 0.9 USD, and it is necessary to exchange 10,000 zunUSD for crvUsd

using the deflate method to equalize the exchange rate. Setting the slippage:

In the current implementation: 90 USD (= 1%)

In a percent-based implementation: 1% (= 90 USD)

Let's say the zunUSD price is 0.7 USD at the moment of transaction execution. So, the

acceptable slippage is:

In the current implementation: 90 USD (= 1.3%)

In a percent-based implementation: 1% (= 70 USD)

As a result, the acceptable slippage in the current implementation is 1.3% , which is more

than the initial 1% .

Zunami's response

In the deflate and inflate methods, two parameters are used: a percentage of the

managed capital strategy in the external protocol and a minimum number of tokens. In the

case of inflation, the second parameter determines the minimum number of stables that

were obtained when withdrawing the tokens from the external pool and depositting the

Zunami Pool to mint zun stables and return them back to the external protocol, thereby

expanding the emission of zun stables. In the case of deflation, it determines the minimum

number of stables that were obtained when converting zun stables before being deposited

into the external protocol. Since the first parameter is initially specified in percentages, the

minimum expected number of tokens after all conversions is specified in units, not

percentages, to minimize the attack vector at the time of withdrawal and conversion.

Therefore, specifying the second parameter as a percentage of slippage is considered a

riskier scenario than specifying an explicit minimum number of tokens withdrawn.

FINDINgS REPORT 25

Location

Description

In the processSuccessfulDeposit function of the ZunamiPool contract, there is a risk of

underflow if depositedValue is less than MINIMUM_LIQUIDITY during the initial deposit to

the strategy. This situation arises because the value of minted would be lower than

locked , leading to an underflow error:

if (totalSupply() == 0) {

 minted = depositedValue;

 locked = MINIMUM_LIQUIDITY;

 _mint(MINIMUM_LIQUIDITY_LOCKER, MINIMUM_LIQUIDITY);

} else {

 // ...

}

_mint(receiver, minted - locked);

Recommendation

We recommend implementing a validation check for the deposit size to ensure that the

amount of tokens minted in the pool is not less than MINIMUM_LIQUIDITY .

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

W-02

Underflow in case of depositedValue is lower than

MINIMUM_LIQUIDITY on the first deposit to the

strategy in ZunamiPool

Severity WARNING

Status • FIXED

File Location Line

ZunamiPool.sol contract ZunamiPool > function processSuccessfulDeposit 199

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/ZunamiPool.sol#L199
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 26

2.4 INFO

Location

Description

In the function processSuccessfulDeposit of the ZunamiPool contract, the balance of the

contract can be inflated by directly sending funds. This can result in an incorrect amount of

shares issued.

 minted =

 ((totalSupply() + 10 ** _decimalsOffset()) * depositedValue) /

 (totalDeposited + 1);

The attacker can front-run the first deposit and inflate the totalDeposited variable,

resulting in zero shares being minted. While this attack results in loss for the attacker, the

user still can loose their deposit.

Recommendation

We recommend increasing the _decimalsOffset value (for example 3).

Update

Fixed in commit 79892fe12bec407d3d9706c19cd421d458263c0c .

I-01 Inflation attack in ZunamiPool

Severity INFO

Status • FIXED

File Location Line

ZunamiPool.sol contract ZunamiPool > function processSuccessfulDeposit 196

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/ZunamiPool.sol#L196
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/79892fe12bec407d3d9706c19cd421d458263c0c/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/79892fe12bec407d3d9706c19cd421d458263c0c/

FINDINgS REPORT 27

Location

Description

In the AccessControl2RolesValuation contract, the only2Roles modifier is introduced to

check the permissions of two roles simultaneously, specifically for the pair

DEFAULT_ADMIN_ROLE and EMERGENCY_ROLE .

However, the DEFAULT_ADMIN_ROLE is the primary administrative role with authority to

assign other roles, including the EMERGENCY_ROLE . Thus, an admin with the

DEFAULT_ADMIN_ROLE can assign the EMERGENCY_ROLE to themselves.

Consequently, using only2Roles([DEFAULT_ADMIN_ROLE, EMERGENCY_ROLE]) becomes

redundant and can be replaced with the simpler modifier onlyRole(EMERGENCY_ROLE) .

Recommendation

We recommend revisiting the use of the only2Roles modifier and considering the use of

onlyRole for code simplification.

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

I-02

Redundant extension of the AccessControl

contract to check two roles at once in

AccessControl2RolesValuation

Severity INFO

Status • FIXED

File Location Line

AccessControl2RolesValuation.sol - 6

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/AccessControl2RolesValuation.sol#L6
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 28

Location

Description

In the locations mentioned above, function parameters are not validated. This lack of

validation can lead to unpredictable behavior or the occurrence of panic errors.

I-03 Parameter validation

Severity INFO

Status • FIXED

File Location Line

FraxApsConvexCurveStratBase.sol
contract FraxApsConvexCurveStratBase >

constructor
46-47

CrvUsdApsConvexCurveStratBase.sol
contract CrvUsdApsConvexCurveStratBase >

constructor
45-46

ConvexCurveStratBase.sol contract ConvexCurveStratBase > constructor 22-23

CurveStratBase.sol contract CurveStratBase > constructor 19-20

StakeDaoCurveStratBase.sol contract StakeDaoCurveStratBase > constructor 15

RecapitalizationManager.sol contract RecapitalizationManager > constructor 31

StakingRewardDistributor.sol
contract StakingRewardDistributor > function

withdrawEmergency
430

StakingRewardDistributor.sol contract StakingRewardDistributor > function claim 381

StakingRewardDistributor.sol
contract StakingRewardDistributor > function

updatePool
300

StakingRewardDistributor.sol
contract StakingRewardDistributor > function

reallocatePool
471

StakingRewardDistributor.sol
contract StakingRewardDistributor > function

addPool
152

StakingRewardDistributor.sol
contract StakingRewardDistributor > function

addRewardToken
131

ZunDistributor.sol contract ZunDistributor > function constructor 78

GenericOracle.sol contract GenericOracle > function setCustomOracle 43

ZunamiStratBase.sol contract ZunamiStratBase > constructor 32

ZunamiStratBase.sol contract ZunamiStratBase > constructor 33

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvFrax/FraxApsConvexCurveStratBase.sol#L46-L47
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/aps/crvUSD/CrvUsdApsConvexCurveStratBase.sol#L45-L46
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/convex/ConvexCurveStratBase.sol#L22-L23
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/CurveStratBase.sol#L19-L20
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/stakeDao/StakeDaoCurveStratBase.sol#L15
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking/RecapitalizationManager.sol#L31
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking/StakingRewardDistributor.sol#L430
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking/StakingRewardDistributor.sol#L381
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking/StakingRewardDistributor.sol#L300
https://github.com/ZunamiProtocol/ZunamiProtocolV2/blob/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking/StakingRewardDistributor.sol#L471
https://github.com/ZunamiProtocol/ZunamiProtocolV2/blob/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking/StakingRewardDistributor.sol#L152
https://github.com/ZunamiProtocol/ZunamiProtocolV2/blob/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/staking/StakingRewardDistributor.sol#L131
https://github.com/ZunamiProtocol/ZunamiProtocolV2/blob/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/distributor/ZunDistributor.sol#L78
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/lib/ConicOracle/contracts/oracles/GenericOracle.sol#L43
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/ZunamiStratBase.sol#L32
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/ZunamiStratBase.sol#L33

FINDINgS REPORT 29

Recommendation

We recommend implementing validation for function parameters to ensure stable and

predictable behavior.

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 30

Location

Description

In this locations, a hardcoded number 5 is used:

 for (uint256 i = 0; i < 5; i++) {

Recommendation

We recommend using the POOL_ASSETS constant instead of a hardcoded number.

Update

Fixed in commit 9ffa8e1b6128d1ade8459a4e492cee669ed241a1 .

I-04 Using constant in CurveStratBase

Severity INFO

Status • FIXED

File Location Line

CurveStratBase.sol contract CurveStratBase > function checkDepositSuccessful 36

ERC4626StratBase.sol contract ERC4626StratBase > function checkDepositSuccessful 40

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/curve/CurveStratBase.sol#L36
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/erc4626/ERC4626StratBase.sol#L40
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/
https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/9ffa8e1b6128d1ade8459a4e492cee669ed241a1/

FINDINgS REPORT 31

Location

Description

In the ZunamiStratBase contract, the tokenDecimalsMultipliers variable is used to

support tokens with fewer than 18 decimals. However, there is no provision to support

tokens with more than 18 decimals.

Recommendation

We recommend implementing support for tokens with high decimal counts.

I-05 High decimals tokens support in ZunamiStratBase

Severity INFO

Status • ACKNOWLEDGED

File Location Line

ZunamiStratBase.sol contract ZunamiStratBase 23

https://github.com/ZunamiProtocol/ZunamiProtocolV2/tree/8bc108201bef8c4d341ecd3a29a3b1d975019cec/contracts/strategies/ZunamiStratBase.sol#L23

FINDINgS REPORT 32

Description

All contracts across the codebase use the following pragma statement:

pragma solidity ^0.8.22;

Contracts should be deployed with the same compiler version and flags used during

development and testing. An outdated pragma version might introduce bugs that affect the

contract system negatively or recent compiler versions may have unknown security

vulnerabilities.

Recommendation

We recommend locking the pragma to a specific version of the compiler.

I-06 Floating pragma

Severity INFO

Status • ACKNOWLEDGED

CONClUSION

3

CONClUSION 34

The following table contains all the findings identified during the audit, grouped by statuses

and severity levels:

The found Critical and Major vulnerabilities have been fixed. However, further testing of the

protocol and achieving full test coverage to ensure that the protocol meets the highest

standards of security is recommended.

Severity FIXED ACKNOWLEDGED Total

CRITICAL 4 0 4

MAJOR 2 0 2

WARNING 1 1 2

INFO 4 2 6

Total 11 3 14

ThANK YOU FOR ChOOSINg

	Zunami Smart Contracts Security Audit Report
	Intro
	Disclaimer
	About Oxorio
	Security Assessment Methodology
	Findings Classification
	Severity Level Reference
	Status Level Reference

	Project overview
	Documentation

	Audit Scope

	Findings Report
	CRITICAL
	C-01 No access control for deposit function call in VaultStrat
	Location
	Description
	Recommendation
	Update

	C-02 Blocking execution of inflate and deflate functions in ConvexCurveStratBase
	Location
	Description
	Recommendation
	Update

	C-03 Elevated price in USD in the getLiquidityTokenPrice function leads to money theft from the pool in ZunamiStratBase
	Location
	Description
	Recommendation
	Update
	Zunami's response
	Oxorio's response
	Zunami's second response

	C-04 Price-feed returns ETH price in FrxETHOracle
	Location
	Description
	Recommendation
	Update

	MAJOR
	M-01 Latency of APS logic in CrvUsdApsConvexCurveStratBase, FraxApsConvexCurveStratBase
	Location
	Description
	Recommendation
	Update

	M-02 Array out of bounds in _setTokens when deleting tokens in ZunamiPool
	Location
	Description
	Recommendation
	Update

	WARNING
	W-01 High slippage in CrvUsdApsConvexCurveStratBase, FraxApsConvexCurveStratBase
	Location
	Description
	Recommendation
	Update
	Oxorio's response
	Zunami's response

	W-02 Underflow in case of depositedValue is lower than MINIMUM_LIQUIDITY on the first deposit to the strategy in ZunamiPool
	Location
	Description
	Recommendation
	Update

	INFO
	I-01 Inflation attack in ZunamiPool
	Location
	Description
	Recommendation
	Update

	I-02 Redundant extension of the AccessControl contract to check two roles at once in AccessControl2RolesValuation
	Location
	Description
	Recommendation
	Update

	I-03 Parameter validation
	Location
	Description
	Recommendation
	Update

	I-04 Using constant in CurveStratBase
	Location
	Description
	Recommendation
	Update

	I-05 High decimals tokens support in ZunamiStratBase
	Location
	Description
	Recommendation

	I-06 Floating pragma
	Description
	Recommendation

	Conclusion

