
APRIL 10, 2024

RHO

PROTOCOL

SMART

CONTRACTS

SECURITY

AUDIT REPORT

2

CONTENTS

1. INTRO .. 4

1.1. DISCLAIMER ... 5

1.2. ABOUT OXORIO ... 6

1.3. SECURITY ASSESSMENT METHODOLOGY .. 7

1.4. FINDINGS CLASSIFICATION .. 8

Severity Level Reference .. 8

Status Level Reference ... 8

1.5. PROJECT OVERVIEW .. 9

1.6. AUDIT SCOPE ... 10

2. FINDINGS REPORT ... 11

2.1. CRITICAL ... 12

C-01 Tick handling in VAMM, LiquidityLogic can lead to losses in certain cases when the market

rate falls on the interval boundary ... 12

C-02 Excess number of maker provisions in a single market may lead to a gas bomb in

LiquidationLogic, FutureLogic, Future ... 16

C-03 Multiple unsettled futures lead to gas bomb in LiquidationLogic .. 20

C-04 Current rate manipulation in SwapLogic can lead to misappropriation of collateral from

CollateralManager by malicious actor. .. 22

C-05 Rounding in SwapLogic may lead to discrepancies in the amounts of fixed and floating tokens

being exchanged in a trade .. 29

2.2. MAJOR .. 35

M-01 Positions during maturityLockout continue to affect margin calculations in MarketLogic 35

M-02 Market may be subject to manipulation by an attacker, given sufficient resources and

favorable market conditions at the time ... 38

M-03 In certain cases, when the current rate falls on the LP interval boundary, LP fee delta may

become negative ... 42

3

M-04 If the market rate is set incorrectly at market initiation, trading in such market will be

impossible .. 44

M-05 Trading is halted if the floating rate oracle packages do not contain a correct cryptographic

signature .. 46

2.3. WARNING ... 48

W-01 Validate decimals in CollateralManager .. 48

W-02 No functions to delete maker provisions in FutureStorage .. 50

W-03 Missing amount validation in CollateralManager .. 51

W-04 Withdraw function can be called by a user without unsettledFutures in RouterLogic 52

W-05 Negative bounds for rate in VAMM .. 53

W-06 Deposits are allowed when there is no ongoing futures in Router 54

W-07 persistIndexAtMaturity can be called before maturity in Router .. 55

W-08 tx.origin is not checked in Router ... 56

W-09 tradeRateImpactLimit is used for one trade in VAMM ... 57

W-10 Lack of validations on the number of intervals in VAMM ... 58

2.4. INFO .. 59

I-01 Freezing futures parameters during maturityLockout ... 59

I-02 Prb-math library not audited ... 60

I-03 Missing events on initialization of contracts .. 61

I-04 Add all interfaces to interface folders ... 62

I-05 Missing validations in CollateralManager ... 63

I-06 Redundant initialization in ContractProvider .. 64

I-07 Similar events in CollateralManager, Router ... 65

I-08 Mixing of type names uint and uint256 .. 66

3. CONCLUSION .. 67

INTRO

1

INTRO 5

1.1 DISCLAIMER

The audit makes no statements or warranties about the utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the platform or

its products, regulatory regime for the business model, or any other statements about the

fitness of the contracts to purpose, or their bug free status. The audit documentation is for

discussion purposes only.

INTRO 6

1.2 AbOUT OxORIO

Oxorio is a young but rapidly growing audit and consulting company in the field of the

blockchain industry, providing consulting and security audits for organizations from all over

the world. Oxorio has participated in multiple blockchain projects during which smart

contract systems were designed and deployed by the company.

Oxorio is the creator, maintainer, and major contributor of several blockchain projects and

employs more than 5 blockchain specialists to analyze and develop smart contracts.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

INTRO 7

1.3 SECURITY ASSESSMENT

METHODOLOgY

A group of auditors is involved in the work on this audit. Each of them checks the provided

source code independently of each other in accordance with the security assessment

methodology described below:

1. Project architecture review

Study the source code manually to find errors and bugs.

2. Check the code for known vulnerabilities from the list

Conduct a verification process of the code against the constantly updated list of already

known vulnerabilities maintained by the company.

3. Architecture and structure check of the security model

Study the project documentation and its comparison against the code including the study of

the comments and other technical papers.

4. Result’s cross-check by different auditors

Normally the research of the project is done by more than two auditors. This is followed by

a step of mutual cross-check process of the audit results between different task performers.

5. Report consolidation

Consolidation of the audited report from multiple auditors.

6. Reaudit of new editions

After the provided review and fixes from the client, the found issues are being double-

checked. The results are provided in the new version of the audit.

7. Final audit report publication

The final audit version is provided to the client and also published on the official website of

the company.

INTRO 8

1.4 FINDINgS CLASSIFICATION

1.4.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

CRITICAL: A bug leading to the possibility of assets theft, locked fund access, or any

other loss of funds due to transfer to unauthorized parties.

MAJOR: A bug that can trigger a contract failure. Further recovery is possible only by

manual modification of the contract state or replacement.

WARNING: A bug that can break the intended contract logic or expose it to DDoS

attacks.

INFO: Minor issue or recommendation reported to / acknowledged by the client's team.

1.4.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

NEW: Waiting for the project team's feedback.

FIXED: Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED: The project team is aware of this finding. Recommended fixes for this

finding are planned to be made. This finding does not affect the overall security of the

project.

NO ISSUE: Finding does not affect the overall security of the project and does not violate

the logic of its work.

DISMISSED: The issue or recommendation was dismissed by the client.

INTRO 9

1.5 PROjECT OvERvIEw

Rho Protocol is a novel decentralized marketplace allowing professional traders to

efficiently exchange rate risk through on-chain swaps and futures. Rho Protocol brings

interest rate derivatives to the DeFi ecosystem. It is designed for institutions and provides

features uniquely catering to this client base, including innovative market pricing (vAMM),

risk management, and compliance (permissioned market sections) solutions. By becoming a

pre-eminent digital asset rates market, Rho Protocol is well-positioned to offer on-chain

rates trading and management for the arrival of major institutions and securities

tokenization.

INTRO 10

1.6 AUDIT SCOPE

access-control

collateral

configuration

future

index-oracles

issuer

libraries

market

router

utils

vamm

The audited commit identifier is 18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc .

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/access-control
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/access-control
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/configuration
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/configuration
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/index-oracles
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/index-oracles
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/issuer
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/issuer
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/libraries
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/libraries
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/utils
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/utils
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm
https://github.com/RhoLabs/rho-contracts-v1/commit/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc
https://github.com/RhoLabs/rho-contracts-v1/commit/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc

FINDINgS

REPORT2

FINDINgS REPORT 12

2.1 CRITICAL

Location

Description

In the function provideLiquidity in the VAMM contract, it's possible to add liquidity twice

to the same interval by setting the VAMM state when the rate is sitting right on the boundary

of the interval. For example:

The initial rate is 0.1 .

Maker adds liquidity to the 0.099 - 0.1 interval, and the notional amount is 1 . The

intervalLiquidity variable, calculated based on density, is 10583236255 .

Taker opens a short position with a notional of 1 . During the swap function

execution, there will be two crosses between ticks. The first cross will happen from

the 0.1 - 0.101 interval (since 0.1 was the initial) to start the swap. However, since

the swap is executing for the amount of 1 notional (which is all the amount on the

interval), the resulting rate will become 0.099 . This rate is equal to the upper

boundary of the next interval, and one more cross will occur:

C-01

Tick handling in VAMM , LiquidityLogic can lead to

losses in certain cases when the market rate falls on

the interval boundary

Severity CRITICAL

Status • FIXED

File Location Line

 contract VAMM 386

 contract SwapLogic 133

 contract SwapLogic 174

 contract LiquidationLogic 158

 contract VAMM 439

 contract LiquidationLogic 524

VAMM.sol

SwapLogic.sol

SwapLogic.sol

LiquidationLogic.sol

VAMM.sol

LiquidationLogic.sol

1.

2.

3.

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L386
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L133
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L174
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L158
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L439
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L524
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L133
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L133
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L174
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L174

FINDINgS REPORT 13

result.needToCross = result.rate == result.intervalInfo.nextRate;

After that, the current rate is still 0.099 , but the current interval is 0.098 - 0.099 .

4. Maker adds liquidity one more time to the 0.099 - 0.1 interval, and the notional amount

is 1 . During the liquidity provision, we fall into the if statement since both the 0.099 - 0.1

interval is within the 0.099 current tick:

if (currentRate >= bounds.lower && currentRate < bounds.upper) {

 _storage.setCurrentIntervalNotionalDensity(_storage.getCurrentIntervalNotionalDensity() +

notionalDensityDelta);

}

However, the getCurrentIntervalNotionalDensity view function will return the notional

density of the 0.098 - 0.099 interval, since the state of the VAMM was updated during the

previous step. The getCurrentIntervalNotionalDensity function will return 0 value of

the 0.098 - 0.099 interval liquidity, while it should have returned 1000000 value of the

0.099 - 0.1 interval liquidity.

5. Taker opens the long position for 3 notional, and the first step of the swap is executed

with the intervalLiquidity value of 10572652009 , and after that one more cross is

executed, with additional intervalLiquidity of 31749742022 generated from nowhere.

Under normal conditions, the intervalLiquidity should be equal to the 21166490801

value, which is the actual provided liquidity to the VAMM . This notional is created from

nowhere, allowing the creation of an infinite amount of liquidity.

The Proof of Concept of the double add vulnerability is here.

Similar to the incorrect tick handling in the VAMM contract, in the function

liquidatePositions in the LiquidationLogic contract, liquidations can be frontrun by

users by setting the VAMM state when the rate is on the boundary of the interval. This leads

to a revert during the liquidation because, in the function removeLiquidity in the VAMM

contract, the removal of liquidity will revert. The liquidatePositions function will also

revert since the removeLiquidity function is called with the

_liquidateAllFutureProvisions function call.

For example:

A liquidator starts liquidating an underwater position with the liquidatePositions

call.

An attacker frontruns the liquidation by setting the VAMM state when the rate is on

the boundary of the interval.

1.

2.

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L386
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L386
https://gist.github.com/0xorio/6ef545b805852022e3971412e7a4c18a#file-common-ts-L3417-L3477

FINDINgS REPORT 14

The liquidation function is executed and reverted during the removeLiquidity

function call. Liquidity cannot be removed from the interval since, during the liquidity

removal, the code falls into the if statement:

 if (currentRate >= bounds.lower && currentRate < bounds.upper) {

_storage.setCurrentIntervalNotionalDensity(_storage.getCurrentIntervalNotionalDensity() -

notionalDensityDelta);

 }

The getCurrentIntervalNotionalDensity view function returns the notional density of

the interval previous to the interval from which liquidity is attempted to be removed. The

remove liquidity function returns 0 value for the previous interval liquidity (if, for example,

there is no liquidity on the previous interval), while it should have returned the amount of

notional value on the current interval liquidity. This makes it impossible to liquidate users

until the state of the VAMM is changed to the correct tick.

4. When the liquidation transaction fails, the hacker hedges his previous position.

The Proof of Concept of frontrunning case is here.

Recommendation

We recommend reviewing existing logic, adding additional checks for situations when the

rate is located on the lower boundary of one interval and the higher boundary of the other

interval. This could be done by adding additional flags to the storage of the VAMM contract

after swaps and validating the state in case currentRate >= bounds.lower . So the case

currentRate > bounds.lower && currentRate < bounds.upper can be handled in the

way it is handled right now, while the case currentRate == bounds.lower should be

handled differently. These changes must be applied to the provideLiquidity ,

removeLiquidity functions, and functions in the RatePoint library. We also recommend

adding fuzzing tests to the contracts to ensure that all calculations work correctly and as

expected.

Update

Fixed in commits 4b4d43b3aafe5655bb248f4a659cf54974420250 ,

5bc610348e86ef1933fd7f2a0fed254be85b6363 .

Rh0's response

Added logic to handle the exception when the current market rate is equal to the lower

bound of the interval.

3.

https://gist.github.com/0xorio/6ef545b805852022e3971412e7a4c18a#file-common-ts-L3479-L3520

FINDINgS REPORT 15

Oxorio's response

Issue is fixed in the 4b4d43b3aafe5655bb248f4a659cf54974420250 ,

5bc610348e86ef1933fd7f2a0fed254be85b6363 commits.

FINDINgS REPORT 16

Location

Description

In the liquidatePositions , cancelProvisions , and transferPositionsOwnership

functions of the LiquidationLogic contract, there are numerous loops over the

_makerProvisions mapping, as well as several loops over the unsettledFutures

mapping, and other gas-heavy logic that can lead to the out-of-gas error. This problem can

be exploited by a malicious user to block liquidations, resulting in bad debt for the project.

A possible scenario for a malicious user to block liquidation functions:

The malicious user creates a large number of provisions. By providing liquidity to

different bounds and immediately removing liquidity, the user generates numerous

provisions with different bounds. For instance, if a VAMM has 200 intervals with

0.001 tick spacing, the user can create 200 provisions with liquidity distributed on 1

tick, 199 provisions with liquidity distributed on 2 ticks, and so on. This method of

providing liquidity doesn't require substantial funds for the attacker, as the amount

of liquidity provided is minimal and removed immediately, with no fees acquired by

the protocol besides the blockchain gas fee.

The user establishes a position with high leverage. The collateral at risk is a minimal

amount, while the position size and potential profit are substantial.

C-02

Excess number of maker provisions in a single market

may lead to a gas bomb in LiquidationLogic , Futur

eLogic , Future

Severity CRITICAL

Status • FIXED

File Location Line

 contract LiquidationLogic 158

 contract LiquidationLogic 71

 contract LiquidationLogic 267

 contract FutureLogic 112

 contract Future 212

 contract FutureLogic 78

 contract FutureLogic 102

LiquidationLogic.sol

LiquidationLogic.sol

LiquidationLogic.sol

FutureLogic.sol

Future.sol

FutureLogic.sol

FutureLogic.sol

1.

2.

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L158
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L71
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L267
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L112
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/Future.sol#L212
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L78
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L102
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L158
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L158
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L71
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L71
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L267C12-L267C38
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L267C12-L267C38

FINDINgS REPORT 17

When the position goes underwater due to rate movement in the opposite direction,

the user avoids liquidation since the liquidation function reverts with an out-of-gas

error. Consequently, the protocol incurs losses, and bad debt increases.

After some time, the rate changes, the position emerges from underwater, and when

the future expires, the user can settle the position and withdraw funds. Other

functions in the protocol also require a significant amount of gas for execution;

however, these functions are more gas-efficient compared to the liquidation

functions, allowing the user to execute them while the liquidation functions are

blocked.

The Proof of Concept for the described case is here.

Also, in the functions of the the FutureLogic and Future contracts:

makerProvisionsInfo

isEmptyProvision

openMakerPosition

makerLiquidityDistribution

There is a loop over the _makerProvisions mapping, which can lead to the out-of-gas

error. Any user can create a large number of provisions by providing liquidity over a wide

range of bounds or managing existing liquidity by removing some of the liquidity to other

boundaries, which is an expected behavior. However, after reaching the gas limit, the

functions mentioned above will revert with out-of-gas errors. The problem is that functions

such as withdraw , executeTrade , settleMaturedPositions , margin , profitAndLoss ,

and many others use these functions and will also revert with out-of-gas errors. A significant

amount of maker provisions will block all functions of the protocol for a user, without any

possibility to reduce the number of maker provisions or withdraw funds from the protocol.

The user's balance will be stuck forever in the protocol.

Recommendation

We recommend reviewing the existing logic, limiting the number of provisions that can be

created by the user, adding functions for deleting unused maker provisions, optimizing the

gas usage of the liquidation functions, and reducing the number of loops over the

mappings.

Update

Fixed in commits a35700574ae1457d07f8d8c1b82b0cc6ba72afd9 ,

97a431bff30794a89867fadae4536bfdf70e8a70 ,

44c7687fd5484f9a65265b25ea5e448aef9e9935 ,

5376c01512aded2ce208807c063546d99703264f ,

71bee2649fa29f54248c354aa41eed61e83f1f99 .

3.

4.

https://gist.github.com/0xorio/6ef545b805852022e3971412e7a4c18a#file-common-ts-L3079-L3302
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L112
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L112
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/Future.sol#L212
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/Future.sol#L212
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L78
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L78
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L102
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/libraries/FutureLogic.sol#L102

FINDINgS REPORT 18

Rh0's response

A limit for possible maker positions has been introduced to mitigate this risk. Also

provisions that were reduced to 0 get cleaned up and are no longer processed in AMM.

Rh0's response

C-03 - requesting a merge with C-02. We want to request a merge into a single issue with

C-02, describing both sets of implications for Futures and Liquidity. The same logical fix has

been applied to address both issues.

Oxorio's response

The C-02 and C-03 findings were merged into one, the problem was fixed, however the fixes

of the initial problem created new issues.

In the 97a431bff30794a89867fadae4536bfdf70e8a70 commit in the SettlingLogic

library the UNSETTLED_FUTURES_LIMIT is a constant variable, which can't be changed with

the regular flow of the contract. If in future, the gas cost of the opcodes will change, the

protocol will not have an ability to update the UNSETTLED_FUTURES_LIMIT variable.

At the same time, the protocol uses UUPS proxy pattern, which means that the

UNSETTLED_FUTURES_LIMIT constant variable is stored in the bytecode of the

implementation, which makes it possible to change the UNSETTLED_FUTURES_LIMIT variable

by migrating to another implementation.

We recommend clarifying whether the UNSETTLED_FUTURES_LIMIT must be configurable or

not, adding functions for changing the UNSETTLED_FUTURES_LIMIT variable, storing the

variable in the storage of the contract rather than in the bytecode of the implementation.

In the 97a431bff30794a89867fadae4536bfdf70e8a70 commit in the

ProvisionsLimitChecker library there is a ERC165Checker.supportsInterface check to

the futureStorage contract in the if statement, which doesn't implement the else

condition. At the same time in the 71bee2649fa29f54248c354aa41eed61e83f1f99 commit

in the removeLiquidity function of FutureLogic library there is the same if statement

with the ERC165Checker.supportsInterface check to the futureStorage contract and a

separate else condition. If the futureStorage doesn't implement new interface, the

result += IFutureStorageExtensionV1(address(futureStorage)).getMakerProvisionsSize(user)

operation won't occur. We recommend clarifying the use of the else condition for cases,

when the futureStorage doesn't inherit correct interface as it is done in other parts of the

code, adding comments to this section.

https://github.com/RhoLabs/rho-contracts-v1/commit/97a431bff30794a89867fadae4536bfdf70e8a70#diff-7d6d445cd4fba7b61c954b2496653a299950e7af71cd2aac61e0ce6c8ebd0a90
https://github.com/RhoLabs/rho-contracts-v1/commit/97a431bff30794a89867fadae4536bfdf70e8a70#diff-7d6d445cd4fba7b61c954b2496653a299950e7af71cd2aac61e0ce6c8ebd0a90
https://github.com/RhoLabs/rho-contracts-v1/commit/97a431bff30794a89867fadae4536bfdf70e8a70#diff-7d6d445cd4fba7b61c954b2496653a299950e7af71cd2aac61e0ce6c8ebd0a90
https://github.com/RhoLabs/rho-contracts-v1/commit/97a431bff30794a89867fadae4536bfdf70e8a70#diff-7d6d445cd4fba7b61c954b2496653a299950e7af71cd2aac61e0ce6c8ebd0a90
https://github.com/RhoLabs/rho-contracts-v1/commit/71bee2649fa29f54248c354aa41eed61e83f1f99#diff-8671a12a90f023c4abcea1052099be561c3f7f4fe32d17d8365b72a24ea4bd45R294-R317
https://github.com/RhoLabs/rho-contracts-v1/commit/71bee2649fa29f54248c354aa41eed61e83f1f99#diff-8671a12a90f023c4abcea1052099be561c3f7f4fe32d17d8365b72a24ea4bd45R294-R317

FINDINgS REPORT 19

Rh0's response

Regarding the C-02, I added a couple of comments to the code and handled the else

branch, which was not there previously: https://github.com/RhoLabs/rho-contracts-v1/

commit/616c9dae592d04737a0b4d34ea341376584a0ff1

Originally, the else branch was not introduced because new features are released with

new code. However, for transparency and based on your recommendation, we decided to

add it after all.

Updating limits on the number of positions is considered purely a technical necessity.

Therefore, executing this through replacing the implementation of contracts seems fine. We

currently do not plan to add any specific role responsible for setting these limits through

contract functions. Also, updates to the limits are likely to be associated with changes/

optimizations in the code. This way, limits and code can be updated atomically within a

single transaction.

Oxorio's response

The problem was fixed in the 616c9dae592d04737a0b4d34ea341376584a0ff1 commit.

https://github.com/RhoLabs/rho-contracts-v1/commit/616c9dae592d04737a0b4d34ea341376584a0ff1
https://github.com/RhoLabs/rho-contracts-v1/commit/616c9dae592d04737a0b4d34ea341376584a0ff1

FINDINgS REPORT 20

Description

Creating multiple unsettled positions can lead to the blocking of liquidations, withdrawals,

and other operations. Over the protocol's lifetime, markets will have many different futures,

both active and finished. Since only a user can settle their futures, it's possible to create

numerous unsettled futures with the provideLiquidity or transferPositionsOwnership

functions. A large quantity of unsettled futures for a user poses a significant problem for the

protocol. For example, it becomes unprofitable to liquidate small positions of the user with

many unsettled futures because the transferPositionsOwnership and

liquidatePositions functions are gas-heavy. Therefore, positions might not be liquidated

even if the liquidation transaction gas fee is 1 ETH, and the amount for liquidation is 0.5

ETH.

Furthermore, having multiple loops over unsettled futures in gas-heavy functions

exacerbates the situation:

In the liquidatePositions function, there is a for loop of unsettled futures in the margin

function with multiple external calls, calculating the profitAndLoss of the user. After that,

in the initialMarginThreshold function, there is a for loop of unsettled futures. Following

that, there is a loop in the lpMarginThreshold function, and after that, there is a for loop in

the liquidationMarginThreshold function with multiple external calls. After that, there is

another for loop in the _performLiquidationTrades function with gas-heavy logic and

external calls. Right after that, there is one more margin and initialMarginThreshold

calls with for loops. In the very end, in the MarginUpdate event, there is one more margin

call.

In total, there are at least 8 for loops for the length of the unsettled futures of the user in

the liquidatePositions function. This implies that, to liquidate a user with only 3 active

futures, it's needed to loop over each of these futures 24 times, executing multiple external

calls and other gas-heavy operations. This architecture creates risks with a gas bomb attack,

where the user creates multiple futures to revert the liquidation function.

It's worth mentioning that in multiple other functions with unsettled futures, this problem

exists. In the worst-case scenario, the loop over unsettled futures will revert the withdraw

function in the Router contract with an out-of-gas error, blocking all user funds.

C-03
Multiple unsettled futures lead to gas bomb in

LiquidationLogic

Severity CRITICAL

Status • FIXED

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L302
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L302
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/RouterLogic.sol#L310
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/RouterLogic.sol#L310

FINDINgS REPORT 21

Recommendation

We recommend refactoring the current architecture, reviewing the usage of unsettled

futures in other functions, and limiting the number of unsettled futures for users.

Update

Fixed in commits a35700574ae1457d07f8d8c1b82b0cc6ba72afd9 ,

97a431bff30794a89867fadae4536bfdf70e8a70 .

Rh0's response

Introduced a limit for a number of unsettled futures. Settlement is now forced if the number

of processed futures exceeds the limit.

Oxorio's response

The issue has been fixed in the a35700574ae1457d07f8d8c1b82b0cc6ba72afd9 ,

97a431bff30794a89867fadae4536bfdf70e8a70 commits.

FINDINgS REPORT 22

Location

Description

In the calcSwapStepState function of the SwapLogic contract, a malicious user can steal

all the collateral from the collateralManager by manipulating the current rate.

When calculating a swap on the last interval, a new rate is determined based on a new price.

The calculation of the new price, in turn, depends on the current price in the interval, and

the current price is derived from the current rate.

Thus, the transformation chain is as follows:

currentRate->currentPrice -> targetPrice->targetRate

Here's how it happens in the code:

// Conversion of currentPrice from currentRate

UD60x18 currentPriceSqrt = uSqrt(rateToPrice(params.futureRate, params.indexWithMaturity,

params.rateMath));

// Calculation of targetPrice

targetPriceWithSqrt.priceSqrt = params.direction == RiskDirection.Value.PAYER

 ? calcTargetPriceSqrtByYAmount(params.targetFloatTokenAmount, intervalLiquidity,

currentPriceSqrt, false)

 : calcTargetPriceSqrtByYAmount(params.targetFloatTokenAmount, intervalLiquidity,

currentPriceSqrt, true);

targetPriceWithSqrt.price = targetPriceWithSqrt.priceSqrt * targetPriceWithSqrt.priceSqrt;

C-04

Current rate manipulation in SwapLogic can lead to

misappropriation of collateral from CollateralManage

r by malicious actor.

Severity CRITICAL

Status • FIXED

File Location Line

 contract SwapLogic > function calcSwapStepState 164SwapLogic.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L164

FINDINgS REPORT 23

// Conversion of targetRate from targetPrice

result.rate = params.rateMath.priceToRate(

 params.rateMath.rebaseFloatTokenToNotional(targetPriceWithSqrt.price,

params.indexWithMaturity.floatIndex),

 params.indexWithMaturity.timeToMaturity

);

During these transformations, there are rounding errors in the calculations. Because of this,

in the case of a small change in price, inaccuracies occur. For example, if a payer creates a

long position and the rate was supposed to increase (targetRate > currentRate), a

situation may arise where after the swap, the rate decreases (targetRate < currentRate).

Let's take the following VAMM state as an example and assume that we are swapping as a

payer , creating a long position. Get the currentPrice from the currentRate :

currentRate = 101000000000000000

timeToMaturity = 29959187000000000000000000

floatIndex = 1100000000000000000

price = rateToPrice(currentRate, timeToMaturity) = 1/(1 + currentRate)^t = 912645389562917100

currentPrice = rebaseNotionalToFloatToken(price, floatIndex) = price/floatIndex =

829677626875379181

sqrtCurrentPrice = sqrt(currentPrice) = 910866415494269489

Since we are a payer, we take float tokens from the pool and bring in fixed tokens.

Accordingly, the price - the ratio of float tokens to fixed tokens - will decrease. Suppose we

made a very small change in price - by one unit of sqrtCurrentPrice , then we determine

targetRate from the new price - targetPrice :

sqrtTargetPrice = sqrtCurrentPrice - 1 = 910866415494269488

timeToMaturity = 29959187000000000000000000

floatIndex = 1100000000000000000

targetPrice = sqrtTargetPrice * sqrtTargetPrice = 829677626875379178

price = rebaseFloatTokenToNotional(targetPrice, floatIndex) = targetPrice * floatIndex =

912645389562917095

targetRate = priceToRate(price, timeToMaturity) = 1/(price**(1/t)) - 1 = 100999999999999987

targetRate < currentRate

FINDINgS REPORT 24

Thus, with a slight change in price during a swap due to a long position, the rate of the

future shifts not upwards but downwards. And, because the current rate =

101000000000000000 is the interval boundary, then the new future rate =

100999999999999987 is in the adjacent interval.

Such a slight change in price can be achieved if there is a large amount of liquidity in the

interval, while the swap is done with a very small notional amount.

This leads to the ability to steal collateral from collateralManager , because of incorrect

calculation of LP fee for liquidity providers. Let's consider an attack scenario:

The current rate of the future is set at 0.1 , intervalLength is 0.001 , floatIndex is

1.1 , and the token decimal is 6 .

The user deposits 1000000002000003 tokens to the collateralManager .

The user provides liquidity in two intervals:

1000000 token for the interval [0.1; 0.101]

1000000000000000 tokens for the interval [0.101; 0.102]

The user creates a long position by swapping a notional of 1000003 tokens:

He exchanges 1000000 tokens in the interval [0.1; 0.101]

and another 3 tokens in the interval [0.101; 0.102]

As a result of this swap, the new rate is set to 100999999999999987 - below the

boundary of the interval [0.101; 0.102] . In this case, the logic of handling boundary

crossing did not work; the cross function from the RatePoint library was not called,

and as a result, the parameter cumulativeAccruedLPFeeOutside was not updated. Also,

_currentIntervalNotionalDensity from the SwapLogic library did not update.

As a result, the balance function for the user returns an LP fee value of

10000000000000 tokens, and the user's margin will be significantly more than his entire

deposit:

total margin before the swap - 1000000002000003

total margin after the swap - 1009527260560516

Next, the user can remove liquidity from the [0.101; 0.102] interval and create a long

position on the same notional amount, reducing their initialMarginThreshold to a

level where he can withdraw collateral before the future execution is complete. And he

can withdraw more collateral than he deposited in total -

1007079623059571 > 1000000002000003 .

Here is a Proof of Concept of the case described above.

Recommendation

We recommend reviewing the logic to prevent setting the rate outside the current interval

during a swap. We also recommend adding fuzzing tests to the contracts to ensure that all

calculations work correctly and as expected.

◦

◦

◦

◦

◦

◦

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/RatePoint.sol#L170C18-L170C18
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/RatePoint.sol#L170C18-L170C18
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L346
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L346
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/MakerProvision.sol#L27
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/MakerProvision.sol#L27
https://gist.github.com/0xorio/6ef545b805852022e3971412e7a4c18a#file-inaccurateratecalculation-ts

FINDINgS REPORT 25

Update

Fixed in commits 071c43897fa3f05ae34b581d3a0b0ae94581f145 ,

221efde3110cadc678dfffecd2c2d87cbb4ea934 .

Rh0's response

We have added restrictions for the target price so that it cannot go beyond the interval.

Oxorio's response

In the 071c43897fa3f05ae34b581d3a0b0ae94581f145 commit in the calcSwapStepState

function of SwapLogic library was added logic which "caps" the price to the current interval.

In the 221efde3110cadc678dfffecd2c2d87cbb4ea934 commit there is a test case scenario,

where after the swap the rate is "capped" from the 100999999999999964 value to the

101000000000000000 value in order to move the rate to the correct tick. However, because

of this "cap", small amount of fixed tokens is not exchanged to the float tokens. This leads to

the situation, when the exchange curve is moving higher on the ordinate axis, creating an

inflation problem between the fixed and float tokens rates. Considering the amounts from

the 221..934 commits test case, the user by swapping 1.000003 of notional tokes has

spent 1019348 fixed tokens in order to shift the rate to the 101000000000000000 with the

"cap" operation, but without the "cap" operation the user would need to swap of 1.000047

of notional tokes, spending 1019395 of fixed tokens in order to drive the rate to the

101000000000000005 , so because of the "cap" operation the disbalance in the pool is about

47 tokens, and the rate between the fixed and float tokens is lightly inflated.

Despite the fact that the inflation is very small, it's worth considering that this can happen

unlimited times in the pool, and the amount of the inflation highly depends on the

configuration of the pool and amount of the decimals of notional token. This inflation can

lead to the full halt of the trading, because of the calculations of result.tradeRate

variable in SwapLogic library:

 // With the inflated rate, tradeRate variable is also inflated, trading stops

 // because of the `TradeRateLimitIsExceeded` error

 result.tradeRate = params.rateMath.priceToRate(

 params.rateMath.rebaseFloatTokenToNotional(

 params.floatTokenDelta / swapState.fixedTokenDelta, // uses the rate between fixed

and float tokens

 params.indexWithMaturity.floatIndex

),

 params.indexWithMaturity.timeToMaturity

);

https://github.com/RhoLabs/rho-contracts-v1/commit/071c43897fa3f05ae34b581d3a0b0ae94581f145#diff-5bc610348e86ef1933fd7f2a0fed254be85b6363
https://github.com/RhoLabs/rho-contracts-v1/commit/071c43897fa3f05ae34b581d3a0b0ae94581f145#diff-5bc610348e86ef1933fd7f2a0fed254be85b6363
https://github.com/RhoLabs/rho-contracts-v1/commit/221efde3110cadc678dfffecd2c2d87cbb4ea934#diff-5bc610348e86ef1933fd7f2a0fed254be85b6363
https://github.com/RhoLabs/rho-contracts-v1/commit/221efde3110cadc678dfffecd2c2d87cbb4ea934#diff-5bc610348e86ef1933fd7f2a0fed254be85b6363

FINDINgS REPORT 26

As a Proof of Concept, it will be easier to review the case when the amount of fixed and float

tokens after the swap is very small and not precise because of this, since with the current

configuration of the pool from the test case it will take an enormous amount of steps:

 // minNotional is changed to toBn('0.000001', 6) in order to show the case

 it.only('Check interval cap when the liquidity amount is large and the notional amount is

small', async function () {

 const { router, erc20Token, future1Id, oraclePackage, marketId } =

 await loadFixture(deployCompoundingVersion)

 const [, maker1, taker1] = await ethers.getSigners()

 const decimals = await erc20Token.decimals()

 // Mint tokens

 const makerDepositAmount = toBn('10000001.000003', decimals)

 await mintAndApprove(router, erc20Token, [maker1], makerDepositAmount)

 const takerDepositAmount = toBn('10', decimals)

 await mintAndApprove(router, erc20Token, [taker1], takerDepositAmount)

 const currentTs = await getCurrentBlockTimestamp()

 const deadline = BigNumber.from(currentTs + 1000 * 1000)

 // Deposit tokens for maker and taker. Taker just deposits and does nothing with his

collateral.

 await router.connect(maker1).deposit(marketId, maker1.getAddress(), makerDepositAmount,

true, [oraclePackage])

 await router.connect(taker1).deposit(marketId, taker1.getAddress(), takerDepositAmount,

true, [oraclePackage])

 // Maker provides liquidity in two intervals:

 // - Liquidity is set to 1 token for the interval [0.1; 0.101]

 // - Liquidity is set to 100000000000000 tokens for the interval [0.101; 0.102]

 // The initial rate is 0.1

 await router

 .connect(maker1)

 .provideLiquidity(

 future1Id,

 toBn('0.000001', decimals),

 toBn('0', decimals),

 toBn((100 / 1000).toString()),

 toBn((101 / 1000).toString()),

 deadline,

 false,

 [oraclePackage]

)

 await router

 .connect(maker1)

 .provideLiquidity(

 future1Id,

FINDINgS REPORT 27

 toBn('100000000', decimals),

 toBn('0', decimals),

 toBn((101 / 1000).toString()),

 toBn((102 / 1000).toString()),

 deadline,

 false,

 [oraclePackage]

)

 // Maker swaps 0.000003 tokens of notional.

 // Such small change of notional results in the small change of fixed token and float

tokens in the pool

 // The rate between fixed and float tokens inflates, resulting in not precise

calculation of tradeRate

 // Because of the inflated fixed and float tokens deltas, the tradeRate is also

inflated, trade reverts with

 // TradeRateLimitIsExceeded error, despite the fact that we have exchanged very small

amount of notional

 // In this case, fixed token delta is 3, float token delta is 2, the rate is

666666666666666666

 // Which results in 3715134049587793631 rate impact

 await expect(router

 .connect(maker1)

 .executeTrade(

 future1Id,

 riskDirection.PAYER,

 toBn('0.000003', decimals),

 toBn('1'),

 toBn('0', decimals),

 deadline,

 false,

 [oraclePackage]

)).to.be.revertedWithCustomError(router, "TradeRateLimitIsExceeded");

 // Under normal conditions with the swap of 1 token of notional

 // Fixed token delta is 1019430, float token delta is 909090, the rate is

891763044054030193

 // Which results in 101005024060487136 rate impact

 // So, with the larger of notional the final rate is considered to be smaller

 // This means that with the inflated rate between fixed and float tokens, trading

becomes unaccessible

 await router

 .connect(maker1)

 .executeTrade(

 future1Id,

 riskDirection.PAYER,

FINDINgS REPORT 28

 toBn('1', decimals),

 toBn('1'),

 toBn('0', decimals),

 deadline,

 false,

 [oraclePackage]

)

 })

In the following PoC, the swap reverts with the TradeRateLimitIsExceeded error because

of the inflation problem, even though we are exchanging a very small amount of tokens.

We recommend reviewing this scenario, and adding the limitation on the max liquidity of

the tick (Uniswap V3 as an example) in order to minimize the risks.

Rh0's response

Regarding the finding in C-04, we didn't find any ways to exploit it. We agree that there is

negligibly small error under certain conditions, but considering it as accumulative with each

trade is not deemed correct, as I described yesterday: After each trade, the market operates

based on the future rate that arises after that trade, and further calculations are based on

this new future rate, rather than some implied, albeit more accurate rate. It seems incorrect

to compute an exact rate based on the entire history and rely on it instead of the rate set in

the pool. Even if we disregard a specific cap operation, the error in future rate calculations

will accumulate with each operation. If we perform historical calculations of all trades with

higher precision than currently available, we will obtain a different rate, but that does not

mean that the market considers this rate correct, as each new trade is based on the rate

that preceded it.

The TradeRateLimitIsExceeded error mentioned in the test occurs when setting the

minimum allowable notional to 0.000001 for the USDT analogue. We introduced this

restriction precisely to avoid such errors and accuracy issues with small trade sizes. In the

mainnet, we use a value of 1.0 , so the case mentioned is not possible.

Oxorio's response

We recommend implementing fuzzing tests for this specific case with various pool

configurations, in order to make sure that there is no exploitations cases.

https://github.com/Uniswap/v3-core/blob/fc2107bd5709cdee6742d5164c1eb998566bcb75/contracts/libraries/Tick.sol#L44

FINDINgS REPORT 29

Location

Description

In the calcSwapStepState function of the SwapLogic contract, after determining the new

price, the calculation of fixedTokenDelta occurs on the current interval. It depends on the

difference between the current and new prices:

result.fixedTokenDelta = nextPointFloatAmount == PrbMath.UNSIGNED_ZERO

 ? PrbMath.UNSIGNED_ZERO

 : calcXAmountSqrt(intervalLiquidity, currentPriceSqrt, targetPriceWithSqrt.priceSqrt);

The formula can be simplified as follows:

fixedTokenDelta = L * (1/sqrt(targetPrice) - 1/sqrt(currentPrice))

That is, if the current and new prices are equal, then fixedTokenDelta will be 0 . However,

in the code, there is a check for a zero fixedTokenDelta , but it occurs after the results of

the entire swap, not at each interval.

All of this leads to the fact that a payer can receive floatTokenAmount during a swap

without spending fixedTokenDelta .

A situation with equal prices is possible if we exchange a very small value of

floatTokenAmount with very high liquidity in the interval:

targetPriceWithSqrt.priceSqrt = params.direction == RiskDirection.Value.PAYER

 ? calcTargetPriceSqrtByYAmount(params.targetFloatTokenAmount, intervalLiquidity,

C-05

Rounding in SwapLogic may lead to discrepancies in

the amounts of fixed and floating tokens being

exchanged in a trade

Severity CRITICAL

Status • FIXED

File Location Line

 contract SwapLogic > function calcSwapStepState 159SwapLogic.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L159

FINDINgS REPORT 30

currentPriceSqrt, false)

 : calcTargetPriceSqrtByYAmount(params.targetFloatTokenAmount, intervalLiquidity,

currentPriceSqrt, true);

The formula can be simplified as follows:

sqrtTargetPrice = sqrtCurrentPrice ± (floatTokenAmount/liquidity)

So, with high liquidity and low floatTokenAmount , their ratio can be equal to 0 due to

rounding.

Consider such a scenario:

The current rate of the future is set at 0.1 , intervalLength is 0.001 , floatIndex is

1.1 , and the token decimal is 6

The maker provides liquidity in two intervals:

1000000 tokens for the interval [0.1; 0.101]

1000000000000000000000 tokens for the interval [0.101; 0.102]

The taker creates a long position by swapping a notional of 2 tokens:

They exchange 1000000 tokens in the interval [0.1; 0.101]

and another 1000000 tokens in the interval [0.101; 0.102]

During the swap, on the second interval, the taker will exchange 1000000 tokens, i.e.,

floatTokenAmount = 1_token / floatIndex = 909091 . At the same time, the liquidity

on the interval will be equal to L = 2314927140438373688847623

As a result of dividing

floatTokenAmount/L = 909091/2314927140438373688847623 = 0 , we get 0 due to

rounding a very small value, and in turn:

sqrtTargetPrice == sqrtCurrentPrice

In the end, the taker received floatTokenAmount = 909091 , while spending

fixedTokenDelta = 0 .

This can be exploited by performing such exchanges several times in a row. For this, the

taker needs to make a short position to roll the price back to the [0.1; 0.101] interval and

make a long position again. Thus, he will bypass the ZeroFixedTokenAmount error since he

will spend some amount of fixedTokenAmount in the first interval - [0.1; 0.101] . So, the

following condition will not trigger:

if (swapState.fixedTokenDelta == PrbMath.UNSIGNED_ZERO) revert

IVAMMErrors.ZeroFixedTokenAmount();

Here is a Proof of Concept of the case described above.

◦

◦

◦

◦

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L344
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/SwapLogic.sol#L344
https://gist.github.com/0xorio/6ef545b805852022e3971412e7a4c18a#file-zerofixedtokenamount-ts

FINDINgS REPORT 31

Recommendation

We recommend revising the logic of the code to avoid a situation where, as a result of a

swap on an interval, floatTokenAmount is exchanged with a zero fixedTokenDelta . We

also suggest reviewing the methods for rounding numbers after arithmetic operations and

considering increasing the level of precision.

Update

Fixed in commits 230d987089c6140f9d22a58081c7b8a211f2b02c ,

24b962156a67c70f7254d4495c72cab84f36b280 .

Rh0's response

We have changed the logic for calculating the target price for the payer case.

If the price moves down (payer shifts the rate up), we use rounding up to maximize the

delta and the number of fixed tokens.

If the price moves up (receiver shifts the rate down), we use rounding down to minimize the

delta and the number of fixed tokens.

Oxorio's response

The initial issue has been fixed, and now the output token amount is always minimized.

This fix has created a "feature" - based on the payer notional input it's possible to receive

twice the amount of float token, while exchanging the exact same amount of fixed tokens:

 it.only('fixedTokenAmount is not zero when the liquidity amount is large and the notional

amount is small', async function () {

 const {

 router,

 erc20Token,

 future1Id,

 future2Id,

 oraclePackage,

 marketId,

 contractProvider,

 } = await loadFixture(deployCompoundingVersion)

 const [, maker1, maker2, taker1, taker2] = await ethers.getSigners()

 const decimals = await erc20Token.decimals()

 // Mint tokens for users

 const initialBalance = 2000000000000000

 const convertedInitialBalance = toBn(initialBalance.toString(), decimals)

 await mintAndApprove(router, erc20Token, [maker1, maker2, taker1, taker2],

convertedInitialBalance)

 const currentTs = await getCurrentBlockTimestamp()

FINDINgS REPORT 32

 const deadline = BigNumber.from(currentTs + 1000 * 1000)

 const depositAmount = toBn('250', decimals)

 // Get the VAMM object

 const future2 = await ethers.getContractAt('Future', await

contractProvider.getFutureAddressById(future2Id))

 const vammAddress = await future2.getVAMM()

 // - Liquidity is set to 1000000 token for the interval from 0.1 to 0.101

 // - Liquidity is set to 1000000000000000000000 tokens for the interval from 0.101 to

0.102

 // Then, the taker creates a long position.

 // The initial rate is 0.1.

 await router

 .connect(maker1)

 .provideLiquidity(

 future1Id,

 toBn('1', decimals),

 toBn('1', decimals),

 toBn((100 / 1000).toString()),

 toBn((101 / 1000).toString()),

 deadline,

 false,

 [oraclePackage]

)

 await router

 .connect(maker1)

 .provideLiquidity(

 future1Id,

 toBn('1000000000000000', decimals),

 toBn('1000000000000000', decimals),

 toBn((101 / 1000).toString()),

 toBn((102 / 1000).toString()),

 deadline,

 false,

 [oraclePackage]

)

 // Deposit tokens for a taker

 await router

 .connect(taker1)

 .deposit(marketId, taker1.getAddress(), 0, true, [oraclePackage], { value:

depositAmount })

 // notional amount is 1

 // we spend 1019336 fixed tokens

 // we receive 909090 float tokens

 const [firstTrade] = await router

FINDINgS REPORT 33

 .connect(taker1)

 .callStatic.executeTrade(

 future1Id,

 riskDirection.PAYER,

 toBn('1', decimals),

 toBn('1000000'),

 toBn('0', decimals),

 deadline,

 false,

 [oraclePackage]

)

 // notional amount is 1.000001

 // we spend 12910862 fixed tokens

 // we receive 909091 float tokens

 // compared with the previous trade we spend much more fixed tokens

 // however, due to the minimalization we receive only one extra float token for that

 const [secondTrade] = await router

 .connect(taker1)

 .callStatic.executeTrade(

 future1Id,

 riskDirection.PAYER,

 toBn('1.000001', decimals),

 toBn('1000000'),

 toBn('0', decimals),

 deadline,

 false,

 [oraclePackage]

)

 // notional amount is 2

 // we spend 12910862 fixed tokens, same as at the previous trade

 // we receive 1818181 float tokens, which is 2 times bigger compared to the previous

trade

 // so, by exchanging the same amount of fixed tokens as in the previous trade we receive

 // twice the amount of float tokens

 const [thirdTrade] = await router

 .connect(taker1)

 .callStatic.executeTrade(

 future1Id,

 riskDirection.PAYER,

 toBn('2', decimals),

 toBn('1000000'),

 toBn('0', decimals),

 deadline,

 false,

 [oraclePackage]

FINDINgS REPORT 34

)

 })

We recommend reviewing this scenario, and adding the limitation on the max liquidity of

the tick (Uniswap V3 as an example) in order to minimize the risks of this "feature"

occurring.

Rh0's response

We don't use unchecked math like Uniswap, so the maximum limit already exists in the

types from the PRB math library. The described feature leads to a position with a larger

number of fixed tokens (rounded up), in a certain case. Since this case relates to the payer

direction, the number of fixed tokens determines how much payer will pay, this feature

leads to increased loss but no income. Thus it cannot be considered as a vulnerability.

https://github.com/Uniswap/v3-core/blob/fc2107bd5709cdee6742d5164c1eb998566bcb75/contracts/libraries/Tick.sol#L44

FINDINgS REPORT 35

2.2 MAjOR

Location

Description

In these locations within the functions:

dv01AndRiskDirection

initialMarginThreshold

initialMarginThresholdWithPosition

initialMarginThresholdWithPositions

lpMarginThreshold

lpMarginThresholdWithProvision

liquidationMarginThreshold

While iterating through the unsettledFutures mapping, the following construction is used

in the code block:

if (future.timeIsOutOfTerm(0)) continue;

M-01
Positions during maturityLockout continue to affect

margin calculations in MarketLogic

Severity MAJOR

Status • FIXED

File Location Line

 contract MarketLogic > function dv01AndRiskDirection 168

 contract MarketLogic > function initialMarginThreshold 220

 contract MarketLogic > function initialMarginThresholdWithPosition 266

 contract MarketLogic > function initialMarginThresholdWithPositions 315

 contract MarketLogic > function lpMarginThreshold 371

 contract MarketLogic > function lpMarginThresholdWithProvision 406

 contract MarketLogic > function liquidationMarginThreshold 445

MarketLogic.sol

MarketLogic.sol

MarketLogic.sol

MarketLogic.sol

MarketLogic.sol

MarketLogic.sol

MarketLogic.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L168
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L220
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L266
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L315
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L371
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L406
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L445
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L168
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L168
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L220
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L220
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L266
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L266
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L315
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L315
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L371
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L371
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L406
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L406
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L445
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/libraries/MarketLogic.sol#L445

FINDINgS REPORT 36

This construction does not consider maturityLockout , as it only skips finalized futures.

Consequently, positions in these futures will continue to impact the user's margin, even

though these positions are no longer active.

During liquidation in the transferPositionsOwnership and cancelProvisions functions,

while iterating through the unsettledFutures mapping, maturityLockoutSeconds is

taken into account, opening opportunities for manipulation by a hacker.

Consider the following scenario:

A user opens two positions in different futures in different directions - Long and

Short. Positions hedge each other.

The index rate changes, the Short position incurs losses, approaching liquidation in

Future 1. The Long position is healthy and has a profit.

Future 1 enters maturity lockout; however, the Short position still affects the margin.

In Future 2, the index rate changes, or the trading rate changes (for example, a

dishonest user notices this situation and makes a trade to influence the position). The

user's margin falls below the liquidation threshold, and the user's position can be

liquidated.

The user or liquidator starts the user's liquidation process using the

transferPositionsOwnership function. In this function, due to the check that the

position in Future 1 is already locked - it starts to liquidate the position in Future 2,

which is profitable.

The hacker takes the user's collateral and reward without adding his funds to the

position, taking the user's funds during liquidation.

Here is a Proof of Concept of the case described above.

Recommendation

We recommend revising the logic for calculating margin on positions, taking into account

possible locking in a maturityLockout . The start of the maturityLockout should be

handled identically both for the margin and liquidation calculations.

Update

Fixed in commits 2863b4b8711762c19437f8b90132a5418f77f8a3 ,

94bf86548eaedb198bd1cb33ad1f831a59f6e59a ,

9d721ec74e851782a6e6c29572cedc6ba10b45fc .

Rh0's response

Positions currently in maturity lockout do affect margin requirements, they are considered

active all the way to the point of maturity. Positions in the maturity lockout have now also

been made transferrable via novation. Calculations of the transferring amount were revised

accordingly.

1.

2.

3.

4.

5.

6.

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L304
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L304
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L101
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/LiquidationLogic.sol#L101
https://gist.github.com/0xorio/6ef545b805852022e3971412e7a4c18a#file-maturitylockout-ts

FINDINgS REPORT 37

Oxorio's response

This finding has been downgraded from Critical to Major, and the problem has been fixed.

FINDINgS REPORT 38

Description

In the Issuer contract in the createFuture function, the future is created with the

creation of its own VAMM module, initializing the currentInterestRate rate from which

the trading will occur, and the start of the future termStartTimestamp .

Right after the pool creation, trading is still unavailable, as well as liquidity providing to the

pool. During the VAMM initialization, there is also no liquidity provision. This means that at

the termStartTimestamp timestamp, there is no pool liquidity, and the pool is very

vulnerable to manipulations.

Let's dive deep into the possible scenario of the attack when there is no liquidity in the pool,

but keep in mind that the same attack can be performed when there is liquidity in the pool,

but it will be more expensive:

A future with the termStartTimestamp in the future. The pool has no liquidity. VAMM

has 200 intervals with 0.001 tick spacing. The lower bound of the pool is 0 , the

upper bound is 0.2 . The currentInterestRate is 0.1 .

The time of termStartTimestamp comes, and a malicious user starts a manipulation

in the pool right in the starting block, packing all the attack transactions in 1

transaction and frontrunning all other trades to the pool in this block.

For the manipulation, several addresses are used:

maker1 - the address that will provide liquidity to the pool, allowing takers to

open trades.

taker1 - the address that will execute the manipulation itself in the pool,

crossing the liquidity intervals and moving the rate to the desired level.

Positions of this user will be hedged, and this address will not suffer losses

from manipulation itself.

taker2 - the address that will execute the main profitable short that can never

be liquidated.

The maker1 address provides liquidity to the pool in the following way:

provideLiquidity with the bounds 0.125 - 0.126 and the notional amount 1 .

provideLiquidity with the bounds 0.150 - 0.151 and the notional amount 1 .

provideLiquidity with the bounds 0.175 - 0.176 and the notional amount 1 .

provideLiquidity with the bounds 0.199 - 0.2 and the notional amount 1 .

M-02

Market may be subject to manipulation by an attacker,

given sufficient resources and favorable market

conditions at the time

Severity MAJOR

Status • ACKNOWLEDGED

1.

2.

3.

◦

◦

◦

4.

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/issuer/Issuer.sol#L110
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/issuer/Issuer.sol#L110
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/issuer/Issuer.sol#L118
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/issuer/Issuer.sol#L118
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/issuer/Issuer.sol#L141
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/issuer/Issuer.sol#L141
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/Future.sol#L555

FINDINgS REPORT 39

By doing these "liquidity steps" the maker1 allows driving the rate to a higher level on

the curve right to the upper bound of the curve. Since the notional amount is only 1 ,

the fees to the protocol and the liquidity provider are minimal.

The taker1 address executes 4 trades as a PAYER . This is done in 4 separate

transactions to pass the TradeRateImpactLimitExceeded check. The test is executed

with the maxRateImpactPerTrade of 50000000000000000 , the value is taken from

the constants file. Depending on this variable, the number of steps to drive the

liquidity to the upper bound will differ. By executing 4 trades, the rate is moved from

0.1 to 0.126 , then to 0.151 , then to 0.176 , and finally to 0.2 . Since all taker1

positions were as a PAYER and the rate went up, the taker1 address hasn't suffered

any losses except the trading fees.

The maker1 address provides liquidity to the pool with the bounds 0.199 - 0.2 and

the notional amount 1000 .

The taker2 address executes a trade as a RECEIVER with the notional amount

1001 . This trade is executed in 1 transaction, since we are executing the trade within

one tick and the rate changes to 0.199 .

The maker1 adds liquidity to the pool with the bounds 0.1 - 0.101 and the notional

amount 1 as an additional liquidity step, since in the previous time we started from

0.1 , and there was no liquidity in that range.

The taker1 returns the rate back by executing 4 trades as a RECEIVER with the

notional amount 1 . The rate is moved to 0.1 , and the taker1 address hasn't

suffered any losses except the trading fees; all the previous longs are hedged. The

taker1 with the maker1 also can drop the rate even lower if needed.

After that, the maker1 address provides liquidity to the pool with the bounds 0.95 -

0.105 and the notional amount 2000 , or bigger. We don't want to give other users a

chance to drive the rate back to the upper limit, and by providing a lot of liquidity, we

are making it harder for other users to manipulate the rate. The amount of liquidity

and the range can be higher and wider, if necessary, depending on the amount of

funds that the maker1 address has, pool volatility, and liquidity of other users.

On the provided rate close to 0.1 range, other users provide more liquidity, create

trades. As for the taker2 position, it is not interesting, since his position sits on the

very upper corner of the rate curve; his position can never be liquidated. The more

time passes, the less likely that the rate will go back to the upper bound, decreasing

the profits of the attacker. This attack can also be performed in a more complex way

when after the creation of the short position on the upper bound, the attacker

creates a long position on the lower bound from the other address. By doing this, the

attacker's profits will be maximized, and at the same time, the pool will remain

balanced for the other users.

5.

6.

7.

8.

9.

10.

11.

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L542
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L542
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/test/utils/constants.ts#L44
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/test/utils/constants.ts#L44

FINDINgS REPORT 40

The trading stops, the future expires, and the taker2 address settles his position,

gaining profits from the attack.

The Proof of Concept to the attack is here.

Recommendation

We recommend reviewing existing logic, changing the price impact validation by storing the

impact rate in the contract and validating the change across not only one transaction but

across several blocks, adding liquidity before the start of the trading. Allow other users to

add liquidity before the start of the future. Implement an arbitrage bot, which will be

balancing the rates across different pools.

Update

Rh0's response

Looking at this example, it seems to me taker 2 and maker 1 are accounts that belong to the

same owner. The result of the manipulation is that taker 2 receives rate at favorable price,

making profits when the rates are normalized. At the same time, maker 1 pays fixed rate at

unfavorable price for him, losing the same amount of money in the process. Although the

taker 2 has a profitable position, the owner of both account doesn't benefit from the price

manipulation.

It is worth noting that wash trades are a common problem across exchanges. During the

ramp-up period of the protocol, this issue is mitigated by our whitelisting and KYC

requirements. Before making the protocol public, we'll add incentives for more market

participants to provide liquidity at the market's initiation.

12.

https://gist.github.com/0xorio/6ef545b805852022e3971412e7a4c18a#file-common-ts-L3522-L3714

FINDINgS REPORT 41

It doesn't seem to be a bug, it's basically how markets work — having a lot of funds one can

manipulate the market, be it TradFi or DeFi. Since our protocol is at an early stage, we will

have to mitigate those risks manually. For future we'll think about a way to give some

window where Market Makers could place their liquidity before opening the Market for

trades. In the nearest future this would be made for Takers in form of an auction, that

discovers the starting price/rate.

Rh0's response

Market manipulation in TradFi is basically prevented by inability of a single actor to amass

enough dry powder to impact an efficient market in a meaningful way on their own. And

even then, these things happen (see Soros vs Bank of England). In crypto, all Sybil-like

attacks are difficult to deal with and are mainly limited by their economic cost/benefit rather

than technical restrictions. While we plan to implement further price impact controls,

including those covering multiple blocks and longer time periods, all of those can be

inefficient in certain market scenarios OR will limit the market efficiency in “normal”

scenarios.

Oxorio's response

The problem was acknowledged by the Rh0 team, and we have downgraded the finding

from Critical to Major. According to our severity level reference:

MAJOR: A bug that could cause a contract failure, with recovery possible only through

manual modification of the contract state or replacement.

In this case, we consider a consistently profitable position without the possibility of

liquidation as a system failure, which can be rectified only through contract replacement.

This perpetually profitable position not only diminishes the profits of other users but also

creates unfair rates in the pool. We cannot downgrade the problem to a Warning due to the

potential harm that may result from exploitation.

As the client has pointed out, this finding is a common issue across exchanges, and the risks

of price manipulations with a low level of liquidity in the protocol at the beginning of the

future must not be underestimated. While fixes related to price impact control over multiple

blocks may limit market efficiency, implementing logic that initiates the future only after

achieving sufficient liquidity across multiple owners will not harm market efficiency but

rather improve it. Whitelisting users with KYC does not eliminate the problem but does

reduce the risk of exploiting this vulnerability in the near future.

Additionally, regarding Rh0's observations, we would like to add that the profitability of price

manipulation heavily depends on market conditions, liquidity amounts, rate limits, and fee

configurations. A rate manipulation attack can be executed with a minimal notional amount,

and, at the same time, the manipulator will hedge all positions as a payer with the same

positions as a receiver at the same rate levels. This implies that the only expenses for the

manipulation are blockchain gas fees and protocol fees.

FINDINgS REPORT 42

Location

Description

In the function _calcIntervalAccruedLPFeeCumulativeDelta in the RatePoint contract,

the returned amount of the function can be a negative value after the swaps that set the

VAMM state when the rate is sitting on the boundary of the interval. This blocks all liquidity

provisions until the state of the VAMM is changed to the correct tick.

For example:

The initial rate is 0.1 .

Maker adds liquidity to the 0.1 - 0.101 , 0.075 - 0.076 , 0.05 - 0.051 , 0.025 - 0.026 ,

0.000 - 0.001 intervals, and the amount of notional is 1.

Taker drops the rate to 0.000 by making the short position for 1 notional as a

Receiver .

During the last short position, one additional cross occurs to the additional previous

interval before the 0.000 - 0.001 interval. This makes the

_calcIntervalAccruedLPFeeCumulativeDelta function return a negative value

since the signedOverallCumulativeAccruedLPFee is 50000000000000000 , and the

accrued LP fee on the 0.001 tick is 40000000000000000 , which is correct. However,

the accrued LP fee on the 0.000 tick of the lower boundary of the interval equals the

cumulativeAccruedLPFeeOutside variable instead of

signedOverallCumulativeAccruedLPFee - cumulativeAccruedLPFeeOutside and

is 50000000000000000 .

This makes it impossible to add liquidity to any other intervals for all users until the state of

the VAMM is changed to the correct tick.

The Proof of Concept for the finding is here.

M-03
In certain cases, when the current rate falls on the LP

interval boundary, LP fee delta may become negative

Severity MAJOR

Status • FIXED

File Location Line

 contract RatePoint 121RatePoint.sol

1.

2.

3.

4.

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/libraries/RatePoint.sol#L121-L130
https://gist.github.com/0xorio/6ef545b805852022e3971412e7a4c18a#file-common-ts-L3304-L3414

FINDINgS REPORT 43

Recommendation

We recommend adding more validations to the swap function prohibiting crossing to the

incorrect tick.

Update

Fixed in commits f3fdc8670b1a249c700fe87c7291a167854b5bdf ,

0083ecc1ba9c103f15cc0477fa4185316eb0e522 .

Rh0's response

We have added separate logic to work with the case when the current rate is equal to the

lower bound of the interval.

Oxorio's response

The issue has been fixed in the f3fdc8670b1a249c700fe87c7291a167854b5bdf ,

0083ecc1ba9c103f15cc0477fa4185316eb0e522 commits.

FINDINgS REPORT 44

Location

Description

In the constructor of the VAMM contract, the currentRate variable is set during

deployment; however, with the initialization of the currentRate variable, there is no

liquidity provision to the pool. This means that when the currentRate is set to a value far

away from the real interval rates, trading will be impossible for users. This is because

liquidity will be provided on intervals far away from the currentRate , and when executing

a swap, the rate will go to the nearest tick with liquidity, causing the swap to revert due to

the high rate impact. To enable trading, someone should provide liquidity to the pool closer

to the currentRate value, where trading doesn't usually happen. After this, several trades

for the provided liquidity amount should be executed to move the rate to the desired level.

It's unlikely that simple users will handle this case by themselves, and the future will be

unable for trading since all users will receive the TradeRateImpactLimitExceeded error.

Recommendation

We recommend reviewing existing logic and adding liquidity to the pool during the

constructor execution. With enough liquidity across the curve, users will be able to drive

the rate to the appropriate levels by themselves.

Update

Rh0's response

At the current stage we set the starting rate for a new Future manually. We accept the risk

since there is no other way at this point, but we are already designing a solution to this

problem that is the auctions that have to take place to discover the price point at which the

Future should be started.

M-04
If the market rate is set incorrectly at market initiation,

trading in such market will be impossible

Severity MAJOR

Status • NO ISSUE

File Location Line

 contract VAMM > constructor 113VAMM.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L113

FINDINgS REPORT 45

Rh0's response

While the findings are valid (and known to us), we feel that they do not relate to the protocol

code quality (but rather to our management of off-chain infrastructure, which is out of

scope for this particular audit), and may not be relevant to the current implementation:

For M-03, at the current implementation, we set the initial rate at the initiation of the pool

using independent market parameters (say, looking at the futures curve structure on

Binance), and we deploy initial liquidity. If the set rate is wrong, the trading will not be

possible, but since the market is new, there will be no client funds at risk unless we fix the

error. So it feels like a Warning to us.

Oxorio's response

The problem was marked as "no issue" by the Rh0 team, but we haven't downgraded this

finding. According to our severity level reference:

MAJOR: A bug that could cause a contract failure, with recovery possible only through

manual modification of the contract state or replacement.

In this case, because of the incorrect configuration of the pools rate and rate impact

limitations the trading will not be possible in the Future (as you also marked in the

response). This is a contract failure, which can be recovered with the manual modification or

contract state replacement. If clients funds were at risk, the problem would have Critical

severity. Our severity level reference doesn't take into the consideration the likelihood of

the exploitation, amounts of funds or quantities of clients at risk.

FINDINgS REPORT 46

Location

Description

In the function _checkExpiration of the BaseFloatIndexOracle contract, the oracle

signature is checked, and if the signature is outdated, the function reverts. If the oracle

address stops signing the data due to server malfunction, power outage on the machine

with the private key, or any other reason, the oracle will stop working, and the protocol will

cease to function. There are no emergency functions to give users an opportunity to

continue trading, and the protocol will be stuck in the current state. With the volatility of the

crypto market, oracle downtime will lead to the inability of users to add collateral in time, as

the deposit function also requires a fresh oracle signature. After the oracle downtime, all

users will be immediately liquidated.

Recommendation

We recommend reviewing existing logic, adding an emergency state to the protocol that will

allow users to continue trading in case of oracle downtime for a period until the new

signature is produced, or adding a separate deposit function, which will work only in case

of an outdated float index, allowing users to add collateral to their positions and avoid

liquidation.

Update

Rh0's response

Trading is not possible without fresh oracle data.

When the oracle becomes available again, the trading resumes with fresh oracle data. So

nothing manually have to be done on the protocol side.

A significant oracle downtime is a special case. Then the trading should be stopped and

continued after an auction is held to discover new market price. The auctions feature is to

be introduced later on, until then such cases must be handled manually. But their likelihood

is low.

M-05
Trading is halted if the floating rate oracle packages do

not contain a correct cryptographic signature

Severity MAJOR

Status • NO ISSUE

File Location Line

 contract BaseFloatIndexOracle > function _checkExpiration 216BaseFloatIndexOracle.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/index-oracles/base/BaseFloatIndexOracle.sol#L216

FINDINgS REPORT 47

Rh0's response

The trading would halt without fresh oracle-signed data, which is actually an intended

behavior. The trading would restart as normal without any manual interventions once the

oracle data becomes available, so it may not fall within definition of Major. There are certain

risks associated with a sharp market rate shifts at the trading restart in case of a prologued

downtime (that we are working on), which probably justifies having this as a Warning.

Oxorio's response

The problem was marked as "no issue" by the Rh0 team, but we haven't downgraded this

finding. According to our severity level reference:

MAJOR: A bug that could cause a contract failure, with recovery possible only through

manual modification of the contract state or replacement.

In this case, when a significant oracle downtime happens - the protocol halts and all the

state becomes outdated, which we can determine as a protocol failure. The recovery from

this situation is only possible with the manual modifications of the contracts state, or, for

example, it can be an auction process. However, in this repository the auction logic is

missing.

Regarding your first response, with the small downtime without the market volatility the

protocol will be able to work correctly with small consequences, however oracle downtime

of any duration with the market volatility will lead to massive liquidations without possibility

of adding collateral. The likelihood of the finding is not used in our severity level reference.

Regarding your second response, the finding is related mainly to the audited on-chain

scope, since this scope is missing logic for this emergency case, as well as to the deposit

function. This problems relates mainly to the downtime with any duration, but during the

market volatility, resulting in permanent rate shifts, possible bad debt of the protocol

because of the not working liquidations.

Rh0's response

Regarding M-05, there is a small note that in our functionality, there is a granular

configuration for stopping available operations in the protocol. Thus, in the event of

prolonged issues with the oracle, we can run the market with the liquidation operation

stopped to give users time to replenish their margin.

FINDINgS REPORT 48

2.3 wARNINg

Location

Description

In the constructor of the CollateralManager , there is no validation of the

_underlyingToken decimals value. The math in the protocol doesn't work correctly when

the decimals value is smaller than 6 . For example, a token with 2 decimals, representing a

Euro or USD token, which has only 2 decimals for cents, won't work correctly and is not

supported; the math will be incorrect. Test cases:

Successfully handle a simple positive case according to the lightpaper with compounding

math.

Successfully handle a simple positive case according to the lightpaper with linear math.

These cases will revert, as well as other tests will revert with the NotEnoughMargin error.

Recommendation

We recommend validating the decimals variable.

Update

Fixed in commit 1f28e0cb8d917a975f66e03011a4ff4aad7b8d0d .

Rh0's response

Checks were added.

W-01 Validate decimals in CollateralManager

Severity WARNING

Status • FIXED

File Location Line

 contract CollateralManager > constructor 70CollateralManager.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L70

FINDINgS REPORT 49

Rh0's response

This is a good one, but we don't work with fiat. In a crypto world, I don't know of assets with

less than 6 decimals. i.e. happy to take it and fix it, but it's not a major problem for the

existing protocol's shape.

Oxorio's response

This finding has been downgraded from Major to Warning, and the problem has been fixed.

FINDINgS REPORT 50

Location

Description

In the FutureStorage contract, deleteMakerProvision and cleanMakerProvisions

functions for deleting maker provisions have an onlyViaRelatedFuture modifier.

However, there is no such call from the futures contract, which makes it impossible to

delete a maker provision from the FutureStorage contract.

Recommendation

We recommend adding functions to the Future contract that call the FutureStorage

contract to remove makerProvisions .

Update

Fixed in commit 71bee2649fa29f54248c354aa41eed61e83f1f99 .

Rh0's response

We have implemented a mechanism for archiving LP positions when liquidity is deleted.

Positions are cleared in AMM and aggregated in a separate storage.

Oxorio's response

The issue has been fixed in the 71bee2649fa29f54248c354aa41eed61e83f1f99 commit.

W-02
No functions to delete maker provisions in FutureStor

age

Severity WARNING

Status • FIXED

File Location Line

 contract FutureStorage 36

 contract FutureStorage 102

 contract FutureStorage 110

FutureStorage.sol

FutureStorage.sol

FutureStorage.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/FutureStorage.sol#L36
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/FutureStorage.sol#L102
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/FutureStorage.sol#L110

FINDINgS REPORT 51

Location

Description

In the function collectProtocolFee of the CollateralManager contract, there is a

validation that the amount is not greater than the collected protocolFee ; however, there is

no validation that the amount is not equal to 0 .

Recommendation

We recommend adding validation for zero values.

Update

Fixed in commit e3f9117705aff7177e59c1c329953781da3a7115 .

Rh0's response

We changed the behaviour of this function so amount=0 means to collect all protocol fee

available.

Added validation so transaction reverts if protocolFee to be collected is 0.

Oxorio's response

The issue has been fixed in the e3f9117705aff7177e59c1c329953781da3a7115 commit.

W-03 Missing amount validation in CollateralManager

Severity WARNING

Status • FIXED

File Location Line

 contract CollateralManager > function collectProtocolFee 167CollateralManager.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L167

FINDINgS REPORT 52

Location

Description

In the RouterLogic contract, a user can call the withdraw function without having any

unsettled futures by providing the amount variable as zero, which can lead to a DDOS of

MarginUpdate events.

Recommendation

We recommend adding a check for the amount variable to prevent this issue.

Update

Fixed in commit dc809cf689fe28281dda80ea0e7369d180911aa5 .

Rh0's response

When withdraw is called with amount=0 it means to withdraw all withdrawable margin of a

user.

Added check to revert if user withdrawable amount is 0.

Oxorio's response

The issue has been fixed in the dc809cf689fe28281dda80ea0e7369d180911aa5 commit.

W-04
Withdraw function can be called by a user without

unsettledFutures in RouterLogic

Severity WARNING

Status • FIXED

File Location Line

 contract RouterLogic 307RouterLogic.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/libraries/RouterLogic.sol#L307

FINDINgS REPORT 53

Location

Description

In the constructor of the VAMM contract, it is possible to set bounds less than -100% . This

leads to underflow in the functions function rateToPrice , function rateToPrice .

Recommendation

We recommend adding a validation for the lower bound rate to prevent this issue.

Update

Fixed in commit 235977b90639bc153903adc9d82d80d8b43874cd .

Rh0's response

We now validate that the lowest bound rate in VAMM is >= -100% .

Oxorio's response

This commit fixes the initial problem in the 235977b90639bc153903adc9d82d80d8b43874cd .

W-05 Negative bounds for rate in VAMM

Severity WARNING

Status • FIXED

File Location Line

 contract VAMM > constructor 117

 contract VAMM > constructor 41

 contract VAMM > constructor 33

VAMM.sol

CompoundingRateMath.sol

LinearRateMath.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L117
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/libraries/math/CompoundingRateMath.sol#L41
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/libraries/math/LinearRateMath.sol#L33
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/libraries/math/CompoundingRateMath.sol#L41
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/libraries/math/CompoundingRateMath.sol#L41
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/libraries/math/LinearRateMath.sol#L33
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/libraries/math/LinearRateMath.sol#L33

FINDINgS REPORT 54

Location

Description

In the Router contract, deposits to the protocol are allowed when there are no ongoing

futures or delayed futures. In the deposit function, there is a whenNotPaused modifier

that stops all protocol operations, including pausing the withdraw operation. If the protocol

decides to stop creating futures and close, users will still be able to deposit funds into the

protocol.

Recommendation

We recommend adding a separate pause function for the deposit function.

Update

Rh0's response

This doesn't seem to be an issue or a vulnerability. Users could withdraw all their funds back

if they deposit the funds by mistake.

W-06
Deposits are allowed when there is no ongoing futures

in Router

Severity WARNING

Status • NO ISSUE

File Location Line

 contract Router 218Router.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/Router.sol#L218

FINDINgS REPORT 55

Location

Description

In the persistIndexAtMaturity function of the Router contract, there is no check to

ensure that the futureId has already reached maturity.

Recommendation

We recommend validating if the futureId has already reached its maturity in the

persistIndexAtMaturity function.

Update

Fixed in commit cdfb81a7ad41e5b3e5e0622861c15a5908d39e43 .

Rh0's response

Added check so tx reverts if future has not matured yet.

Oxorio's response

The issue has been fixed in the cdfb81a7ad41e5b3e5e0622861c15a5908d39e43 commit.

W-07
persistIndexAtMaturity can be called before

maturity in Router

Severity WARNING

Status • FIXED

File Location Line

 contract Router > function persistIndexAtMaturity 336Router.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/Router.sol#L336

FINDINgS REPORT 56

Location

Description

In the onlyProtocolUser modifier of the Router contract, the tx.origin of the

transaction is not checked together with the msg.sender . This means that it's possible for

any user to call the function from the whitelisted contract, passing the msg.sender check. It

also allows calling all the functions from the whitelisted contract, even if this contract is a

malicious one.

Recommendation

We recommend adding a check to the _checkProtocolUser function of the Router

contract for the tx.origin together with the msg.sender .

Update

Rh0's response

We're not limiting the protocol calls to be done only by users, since there are some

integrations to be expected soon.

W-08 tx.origin is not checked in Router

Severity WARNING

Status • NO ISSUE

File Location Line

 contract Router > modifier onlyProtocolUser 60Router.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/Router.sol#L60

FINDINgS REPORT 57

Location

Description

In the function swap of contract VAMM , the tradeRateImpactLimit is used only during one

trade execution, allowing manipulation of the pool rate by executing several trades in one

block. The tradeRateImpactLimit should be applied for a specific period, for example,

several blocks, and not just for a single trade.

Recommendation

We recommend refactoring the tradeRateImpactLimit logic by validating the difference of

rate impacts not only within one transaction but for a fixed period of time, for example,

several blocks.

Update

Rh0's response

Trade rate impact limit does not cover all cases, in the future we plan to consider a circuit

breaker to automatically stop trading and then start it after an auction.

W-09 tradeRateImpactLimit is used for one trade in VAMM

Severity WARNING

Status • NO ISSUE

File Location Line

 contract VAMM > function swap 463VAMM.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol#L463

FINDINgS REPORT 58

Location

Description

In the constructor of the VAMM contract, the values of _intervalsCount and

_intervalLength are not validated. Simultaneously, when calling the swap function in the

VAMM contract, it iterates over an unrestricted number of intervals.

For example, a situation is possible when a low level of liquidity was provided over a large

number of intervals, and the length of the intervals themselves is very small. In such a

scenario, the taker, when making a swap, will traverse a large number of intervals, spending

gas on processing each of them but will not change the rate too much to trigger the

TradeRateImpactLimitExceeded error. Such a swap will eventually result in an out-of-gas

error.

Recommendation

We recommend implementing validation for the number and size of intervals to prevent

potential gas-related issues.

Update

Rh0's response

There is already a restriction on the minimum number of intervals - 1.

The maximum must be selected by the issuer taking into account the proper value of trade

rate impact limitations. Issuer at this point is a representative of the Team, who chooses

reasonable parameters.

Iterations through all intervals are not required for current logic.

W-10 Lack of validations on the number of intervals in VAMM

Severity WARNING

Status • NO ISSUE

File Location Line

 contract VAMM > constructor 118VAMM.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMM.sol

FINDINgS REPORT 59

2.4 INFO

Location

Description

When manipulating the rate in the last block before maturityLockout , the rate is frozen for

the entire duration of maturityLockout . This effect provides an opportunity for rate

manipulation since, in the next block, no one can return the rate back to its market value.

This impacts users who monitor the futures rate changes through view functions, such as

makerLiquidityDistribution or poolLiquidityDistribution .

Recommendation

We recommend revising the mechanism for providing rate-related information via view

functions to users during the maturityLockout period.

Update

Rh0's response

This manipulation doesn't make sense in terms of futures market. When the Future market

is getting closer to maturity point, its rate should essentially conform to that of the

underlying floating rate. So if whoever "manipulates" the rate just before the maturity

lockout, he only does worse for himself.

I-01 Freezing futures parameters during maturityLockout

Severity INFO

Status • NO ISSUE

File Location Line

 contract ViewDataProvider > function makerLiquidityDistribution 346

 contract ViewDataProvider > function poolLiquidityDistribution 358

ViewDataProvider.sol

ViewDataProvider.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/periphery/ViewDataProvider.sol#L346
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/periphery/ViewDataProvider.sol#L358
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/periphery/ViewDataProvider.sol#L346
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/periphery/ViewDataProvider.sol#L346
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/periphery/ViewDataProvider.sol#L358
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/periphery/ViewDataProvider.sol#L358

FINDINgS REPORT 60

Description

The library prb-math documents have not been audited by a security researcher. With the

use of this library, the protocol increases the risk of unexpected behavior during

calculations.

Recommendation

We recommend updating the library to the latest version from 4.0.0 to 4.0.2 , monitoring

security problems with the library, adding fuzzing tests to the smart contracts to ensure

correct behavior in various cases.

Update

Fixed in commit 3e84a1af2ba7527a7188cd155f9f6f68302ce6d6 .

Rh0's response

Property-based (fuzzy) tests can be found in test/Properties.ts .

We have updated the library version to v4.0.2.

Oxorio's response

The issue has been fixed in the 3e84a1af2ba7527a7188cd155f9f6f68302ce6d6 commit.

I-02 Prb-math library not audited

Severity INFO

Status • FIXED

https://github.com/PaulRBerg/prb-math?tab=readme-ov-file#security

FINDINgS REPORT 61

Location

Description

In the constructor of contracts:

ContractProvider#L76

MarketStorage#L55

VAMMStorage#L52

the emission of events is missing. The absence of emissions in the constructor leads to an

incorrect history of events.

Recommendation

We recommend emitting events in the constructor.

Update

Fixed in commit 40384fff338411801781d1424f485b1089134d81 .

Rh0's response

We have added events with contract initialization parameters.

Oxorio's response

The issue has been fixed in the 40384fff338411801781d1424f485b1089134d81 commit.

I-03 Missing events on initialization of contracts

Severity INFO

Status • FIXED

File Location Line

 contract ContractProvider > constructor 76

 contract MarketStorage > constructor 55

 contract VAMMStorage > constructor 52

ContractProvider.sol

MarketStorage.sol

VAMMStorage.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/configuration/ContractProvider.sol#L76
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/MarketStorage.sol#L55
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMMStorage.sol#L52
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/configuration/ContractProvider.sol#L76
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/configuration/ContractProvider.sol#L76
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/MarketStorage.sol#L55
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/market/MarketStorage.sol#L55
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMMStorage.sol#L52
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/vamm/VAMMStorage.sol#L52

FINDINgS REPORT 62

Description

In the contracts folder, interfaces are mixed with the contracts and libraries in other

folders.

Recommendation

We recommend removing interfaces from folders with contracts and libraries and moving

them to the interfaces folder to keep the repository clean.

Update

Rh0's response

In our opinion, the current approach makes more sense

I-04 Add all interfaces to interface folders

Severity INFO

Status • NO ISSUE

FINDINgS REPORT 63

Location

Description

In the function collectProtocolFee of contract CollateralManager , it's possible to have

a withdrawal of _protocolFee without transferring the tokens themselves due to a lack of

check (to != address(this)). In such a case, emergencyERC20TokenTransfer would need

to be called to manually transfer tokens from the contract.

Recommendation

We recommend adding a check to ensure that the recipient address is not equal to the

address of the CollateralManager contract.

Update

Fixed in commit 6b9bec89a5744ddce38470b0730bcf8c09a594d1 .

Rh0's response

We have added validation.

Oxorio's response

The issue has been fixed in the 6b9bec89a5744ddce38470b0730bcf8c09a594d1 commit.

I-05 Missing validations in CollateralManager

Severity INFO

Status • FIXED

File Location Line

 contract CollateralManager > function collectProtocolFee 176CollateralManager.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L176
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L176
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L176

FINDINgS REPORT 64

Description

In the constructor of contract ContractProvider , the default value of

_isEmergencyModeEnabled is false . There is no need to initialize it in the constructor.

Recommendation

We recommend removing the variable from the constructor to keep the codebase clean.

Update

Fixed in commit 40384fff338411801781d1424f485b1089134d81 .

Rh0's response

Initialization has been removed.

Oxorio's response

The issue has been fixed in the 40384fff338411801781d1424f485b1089134d81 commit.

I-06 Redundant initialization in ContractProvider

Severity INFO

Status • FIXED

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/configuration/ContractProvider.sol#L75
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/configuration/ContractProvider.sol#L75

FINDINgS REPORT 65

Location

Description

In function collectProtocolFee , function collectProtocolFee , similar events with

identical names are called consecutively in the functions Router.collectProtocolFee and

CollateralManager.collectProtocolFee .

Recommendation

We recommend removing the emission of one of the events or changing its name to avoid

creating confusion.

Update

Fixed in commit 3cd598e5595ac8b30dd88deed123034cbd8d2d8a .

Rh0's response

One of the events has been renamed.

Oxorio's response

The issue has been fixed in the 3cd598e5595ac8b30dd88deed123034cbd8d2d8a commit.

I-07 Similar events in CollateralManager , Router

Severity INFO

Status • FIXED

File Location Line

 contract Router > modifier collectProtocolFee 455

 contract CollateralManager > function collectProtocolFee 174

Router.sol

CollateralManager.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/Router.sol#L455
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L174
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L174
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L174
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/Router.sol#L455
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/router/Router.sol#L455

FINDINgS REPORT 66

Location

Description

In function emergencyERC20TokenTransfer and function cleanMakerProvisions , there is

a mixing of type names uint and uint256 .

Recommendation

We recommend using uniform variable type names to avoid creating confusion in the

codebase.

Update

Fixed in commit bb9b46d85afc389f4e0b1560f66a6b5bb4d1e843 .

Rh0's response

The uint typing has been unified.

Oxorio's response

The issue has been fixed in the bb9b46d85afc389f4e0b1560f66a6b5bb4d1e843 commit.

I-08 Mixing of type names uint and uint256

Severity INFO

Status • FIXED

File Location Line

 contract CollateralManager > function emergencyERC20TokenTransfer 187

 contract FutureStorage > function cleanMakerProvisions 113

CollateralManager.sol

FutureStorage.sol

https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L186
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/FutureStorage.sol#L113
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L186
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/collateral/CollateralManager.sol#L186
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/FutureStorage.sol#L113
https://github.com/RhoLabs/rho-contracts-v1/blob/18561a80c5199fd7dbfbe53dbb6516f17aa3ddbc/contracts/future/FutureStorage.sol#L113

CONCLUSION

3

CONCLUSION 68

The following table contains the total number of issues that were found during audit:

Severity FIXED ACKNOWLEDGED NO ISSUE Total

CRITICAL 5 0 0 5

MAJOR 2 1 2 5

WARNING 6 0 4 10

INFO 6 0 2 8

Total 19 1 8 28

THANK YOU FOR CHOOSINg

	Rho Protocol Smart Contracts Security Audit Report
	Intro
	Disclaimer
	About Oxorio
	Security Assessment Methodology
	Findings Classification
	Severity Level Reference
	Status Level Reference

	Project overview
	Audit Scope

	Findings Report
	CRITICAL
	C-01 Tick handling in VAMM, LiquidityLogic can lead to losses in certain cases when the market rate falls on the interval boundary
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	C-02 Excess number of maker provisions in a single market may lead to a gas bomb in LiquidationLogic, FutureLogic, Future
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Rh0's response
	Oxorio's response
	Rh0's response
	Oxorio's response

	C-03 Multiple unsettled futures lead to gas bomb in LiquidationLogic
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	C-04 Current rate manipulation in SwapLogic can lead to misappropriation of collateral from CollateralManager by malicious actor.
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response
	Rh0's response
	Oxorio's response

	C-05 Rounding in SwapLogic may lead to discrepancies in the amounts of fixed and floating tokens being exchanged in a trade
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response
	Rh0's response

	MAJOR
	M-01 Positions during maturityLockout continue to affect margin calculations in MarketLogic
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	M-02 Market may be subject to manipulation by an attacker, given sufficient resources and favorable market conditions at the time
	Description
	Recommendation
	Update
	Rh0's response
	Rh0's response
	Oxorio's response

	M-03 In certain cases, when the current rate falls on the LP interval boundary, LP fee delta may become negative
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	M-04 If the market rate is set incorrectly at market initiation, trading in such market will be impossible
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Rh0's response
	Oxorio's response

	M-05 Trading is halted if the floating rate oracle packages do not contain a correct cryptographic signature
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Rh0's response
	Oxorio's response
	Rh0's response

	WARNING
	W-01 Validate decimals in CollateralManager
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Rh0's response
	Oxorio's response

	W-02 No functions to delete maker provisions in FutureStorage
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	W-03 Missing amount validation in CollateralManager
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	W-04 Withdraw function can be called by a user without unsettledFutures in RouterLogic
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	W-05 Negative bounds for rate in VAMM
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	W-06 Deposits are allowed when there is no ongoing futures in Router
	Location
	Description
	Recommendation
	Update
	Rh0's response

	W-07 persistIndexAtMaturity can be called before maturity in Router
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	W-08 tx.origin is not checked in Router
	Location
	Description
	Recommendation
	Update
	Rh0's response

	W-09 tradeRateImpactLimit is used for one trade in VAMM
	Location
	Description
	Recommendation
	Update
	Rh0's response

	W-10 Lack of validations on the number of intervals in VAMM
	Location
	Description
	Recommendation
	Update
	Rh0's response

	INFO
	I-01 Freezing futures parameters during maturityLockout
	Location
	Description
	Recommendation
	Update
	Rh0's response

	I-02 Prb-math library not audited
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	I-03 Missing events on initialization of contracts
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	I-04 Add all interfaces to interface folders
	Description
	Recommendation
	Update
	Rh0's response

	I-05 Missing validations in CollateralManager
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	I-06 Redundant initialization in ContractProvider
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	I-07 Similar events in CollateralManager, Router
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	I-08 Mixing of type names uint and uint256
	Location
	Description
	Recommendation
	Update
	Rh0's response
	Oxorio's response

	Conclusion

