
MAY 24, 2024

PRIVACY

POOLS SMART

CONTRACTS

SECURITY

AUDIT REPORT

2

CONTENTS

1. AUDIT OVERVIEW ... 4

1.1. PROJECT BRIEF ... 5

1.2. AUDITED FILES ... 6

1.3. PROJECT OVERVIEW .. 7

1.4. SUMMARY OF FINDINGS .. 8

1.5. CONCLUSION .. 10

2. FINDINGS REPORT ... 11

2.1. CRITICAL ... 12

C-01 A dishonest prover can manipulate the proof in IsNum2Bits .. 12

C-02 Possible bypass of validation through invalid input for membership proof 14

C-03 Limitation of merkle tree for withdrawals in PrivacyPool .. 17

C-04 User de-anonymization risk .. 19

C-05 Unverified transaction inclusion in Step (PoI) ... 20

C-06 Lack of nullifier uniqueness check in Step (PoI) .. 21

C-07 Missing output commitment validation in Step (PoI) .. 22

C-08 Lack of sums validation in Step (PoI) ... 23

C-09 Partial transaction history acceptance in Step (PoI) .. 24

C-10 Fees may exceed the amount being sent in PrivacyPool ... 25

2.2. MAJOR .. 29

M-01 Deposit amount logic inconsistency ... 29

M-02 Replay attack vulnerability in PrivacyPool ... 30

M-03 Unchecked transfers in ERC20PrivacyPool .. 32

M-04 Actual token received amount isn't checked in ERC20PrivacyPool 33

M-05 Shielded transfers are possible in the system ... 34

2.3. WARNING ... 35

W-01 Missing validation of the _maximumDepositAmount in PrivacyPool 35

3

W-02 Missing validations in PrivacyPool, ERC20PrivacyPool ... 36

W-03 Relayer address can be zero in ERC20PrivacyPool, ETHPrivacyPool 37

W-04 No minimal value of withdrawal in PrivacyPool ... 38

2.4. INFO .. 39

I-01 Floating pragma, experimental encoder in ETHPrivacyPool, ERC20PrivacyPool, PrivacyPool .. 39

I-02 Unused code in proofOfInnocence.circom ... 40

I-03 Usage of old Poseidon in proofOfInnocence.circom .. 41

I-04 Unused imports in Step (PoI) ... 42

I-05 Inefficient gas usage in MerkleTreeWithHistory .. 43

I-06 Use of custom errors for efficiency and improved information in MerkleTreeWithHistory 44

I-07 No need to explicitly initialize variables with default values ... 46

I-08 Redundant event emissions in PrivacyPool ... 47

I-09 Redundant storage padding in PrivacyPool .. 48

I-10 Complex require logic consumes more gas in PrivacyPool .. 49

I-11 Redundant condition in PrivacyPool ... 50

I-12 Inefficient use of storage in PrivacyPool ... 51

3. APPENDIX ... 52

3.1. DISCLAIMER ... 53

3.2. SECURITY ASSESSMENT METHODOLOGY .. 54

3.3. FINDINGS CLASSIFICATION REFERENCE ... 56

Severity Level Reference .. 56

Status Level Reference ... 56

3.4. ABOUT OXORIO ... 58

AUDIT

OVERVIEW1

AUDIT OVERVIEW 5

1.1 PROjECT BRIEf

Title Description

Client Privacy Pools

Project name Privacy Pools v1

Category Private Transactions

Website https://privacypools.com/

Repository https://github.com/ProofOfInnocence/privacy-pools-v1

Initial Commit e221f0b88e52fb5c214726e765997ef4067793a9

Final Commit 8ab7132877325e27b22053e974b3310d70b860b5

Network Ethereum

Languages Solidity, Circom

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project Manager Viktor Mikhailov - viktor@oxor.io

https://privacypools.com/
https://github.com/ProofOfInnocence/privacy-pools-v1
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/8ab7132877325e27b22053e974b3310d70b860b5
emailto:am@oxor.io
emailto:viktor@oxor.io

AUDIT OVERVIEW 6

1.2 AUDITED fILES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that

estimates logical depth and decision points like loops and conditional branches) by the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

File Lines Blanks Comments Code Complexity

1 contracts/ERC20PrivacyPool.sol 45 5 8 32 16%

2 contracts/ETHPrivacyPool.sol 39 4 7 28 18%

3 contracts/MerkleTreeWithHistory.sol 145 15 16 114 99%

4 contracts/PrivacyPool.sol 138 17 10 111 7%

5 membership-proof/circuits/proofOfInnocence.circom 188 29 45 114 70%

Total 555 70 86 399 53%

https://github.com/boyter/scc
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom
https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 7

1.3 PROjECT OVERVIEW

Privacy Pools is an advanced smart contract-based protocol designed to enhance privacy on

public blockchains while complying with regulatory frameworks. This project builds on the

groundwork laid by Tornado Cash but introduces critical innovations to address specific

vulnerabilities associated with earlier privacy protocols. Notably, Tornado Cash facilitated

anonymous transactions but struggled with misuse by bad actors, leading to regulatory

scrutiny and sanctions. Privacy Pools addresses these issues by allowing users to produce

zero-knowledge proofs that demonstrate whether their funds originate from legitimate

sources, without revealing their entire transaction history. This mechanism is essential for

separating legitimate from non-compliant financial activities.

The architecture of Privacy Pools leverages a novel concept where users can prove

membership or exclusion from custom-defined sets of transactions, termed "association

sets." These sets are constructed to reflect adherence to diverse regulatory standards or

community norms, thus enabling a more nuanced approach to transaction validation. By

using zero-knowledge proofs, Privacy Pools ensures that users can verify the legality of their

transactions without compromising their privacy. This approach not only enhances user

trust and safety but also aligns with global regulatory requirements, providing a sustainable

solution to the challenge of maintaining privacy in decentralized financial systems.

AUDIT OVERVIEW 8

1.4 SUMMARY Of fINDINgS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 10 0 1 3 6

MAJOR 5 0 1 4 0

WARNING 4 0 0 4 0

INFO 12 0 0 9 3

TOTAL 31 0 2 20 9

AUDIT OVERVIEW 9

This table provides an overview of the findings across the audited files, categorized by

severity level. The table enables to quickly identify areas that require immediate attention

and prioritize remediation efforts accordingly.

File TOTAL CRITICAL MAJOR WARNING INFO

contracts/PrivacyPool.sol 15 3 1 3 8

membership-proof/circuits/proofOfInnocence.circom 12 8 1 0 3

contracts/ERC20PrivacyPool.sol 7 1 2 2 2

contracts/ETHPrivacyPool.sol 4 1 0 1 2

contracts/MerkleTreeWithHistory.sol 4 1 0 0 3

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol

AUDIT OVERVIEW 10

1.5 CONCLUSION

Despite the identified issues, most of them have been marked as NO ISSUE or

ACKNOWLEDGED .

We would like to emphasize that items C-02 , C-04 , and C-09 , which have been marked as

NO ISSUE , refer to third-party code where verification takes place. However, the client-

provided code is incomplete and not implemented. Most of its functionality is marked as

TODO . Items C-03 , C-05 , M-02 , M-03 , M-04 , and M-05 also have an ACKNOWLEDGED status,

but no solutions have been found for them at this time.

It should also be noted that the tests presented in the project do not cover all possible

usage scenarios. At the same time, the values of txMerkleRoot and

allowedTxRecordsMerkleRoot used in the tests coincide. This fact suggests insufficient

testing of the project code.

In light of the above, we cannot recommend deploying the project to mainnet. We strongly

recommend that all of the listed issues, especially those of CRITICAL and MAJOR severity,

be addressed and that the project be re-audited.

fINDINgS

REPORT2

fINDINgS REPORT 12

2.1 CRITICAL

Location

Description

In the IsNum2Bits circuit, the template should return 1 if the size of the number in bitwise

representation is less than n , and 0 otherwise. However, due to the lack of constraints, an

attacker can manipulate the output value by altering the information in the expression:

out[i] <-- (in >> i) & 1;

This ultimately gives the attacker the ability to choose the tree in which to prove their

transaction, regardless of whether the transaction is classified as "withdrawal" or "deposit".

component isDeposit = IsNum2Bits(240);

isDeposit.in <== publicAmount;

checkTxRecordsRoot.in[0] <== isDeposit.isLower*(allowedTxRecordsMerkleRoot -

txRecordsMerkleRoot) + txRecordsMerkleRoot;

This finding was discovered by the independent researcher Lev Soukhanov.

Recommendation

We recommend adding constraints on the value passed by the prover to prevent tampering

with the final value.

C-01
A dishonest prover can manipulate the proof in IsNum2

Bits

Severity CRITICAL

Status • FIXED

File Location Line

 template IsNum2Bits 19proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L19

fINDINgS REPORT 13

Update

Client's response

Fixed in commit 8ab7132877325e27b22053e974b3310d70b860b5 .

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/8ab7132877325e27b22053e974b3310d70b860b5/membership-proof/circuits/proofOfInnocence.circom#L9
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/8ab7132877325e27b22053e974b3310d70b860b5/membership-proof/circuits/proofOfInnocence.circom#L9

fINDINgS REPORT 14

Location

Description

It is possible to submit input to the protocol that can bypass all current validations and

convince the validator that the membership proof is valid.

For example, the protocol can accept a valid step_in but pass the following dataset as

input.

[

 {

 "txRecordPathElements": [

 "0x14c12f8a123ec67839b093c9e6a7f4429e690f15bb5dda253bb1c57c3e08b708",

 "5499455416245728767758502084886479424423696064367889023130038198639417800794",

 "2600606430905529428182060339305082646353110793508472649153062931542918209074",

 "11224495635916644180335675565949106569141882748352237685396337327907709534945",

 "2399242030534463392142674970266584742013168677609861039634639961298697064915",

 "13182067204896548373877843501261957052850428877096289097123906067079378150834",

 "7106632500398372645836762576259242192202230138343760620842346283595225511823",

 "17857585024203959071818533000506593455576509792639288560876436361491747801924",

 "17278668323652664881420209773995988768195998574629614593395162463145689805534",

 "209436188287252095316293336871467217491997565239632454977424802439169726471",

 "6509061943359659796226067852175931816441223836265895622135845733346450111408",

 "6520190068409764223804901922836901806344965427489260575428680588368698845875",

 "630132332916246842688588724815186106224110394685542623398451000510712069429",

 "9206039871053115294588634296883085884325447977155589548409410370778004490583",

 "18779153312338976659887621628264397623589151531526416856563780429314827231828",

 "17363895409447993644572750069112567504016430687578426059851649285544630344678",

 "19286143925655010470313606340648478511795716951787385659135295148709476458035",

C-02
Possible bypass of validation through invalid input for

membership proof

Severity CRITICAL

Status • NO ISSUE

File Location Line

 template Step (PoI) 120

 template Step (PoI) 160

proofOfInnocence.circom

proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L120
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L160

fINDINgS REPORT 15

 "4388129095966650031202114509205416778945646941825467776717149885766859085576",

 "1349852001905976393525917581684850395969195070196158093124360497286644081937",

 "17368552900438243823879346548262086836538128269316713944042307770284532592541",

 "18985880316913054223420119281626297509988828082052104176513061368828929683625",

 "4579408122636409797983594817001151232592120036711857848633386522167572030422",

 "11449953026770181129414594616106672273569253702456243279842657156414101762953"

],

 "txRecordPathIndex": 0,

 "accInnocentCommitments": [

 "21663839004416932945382355908790599225266501822907911457504978515578255421292",

 "21663839004416932945382355908790599225266501822907911457504978515578255421292"

],

 "isLastStep": 1,

 "txRecordsMerkleRoot":

"14793069448869167018163244265359265004698140403231416118505165104987905632445",

 "allowedTxRecordsMerkleRoot":

"14793069448869167018163244265359265004698140403231416118505165104987905632445",

 "step_in":

"3065659258246033882340361795426780261220662006474317618385752630881570082324",

 "publicAmount": "30000000000000000",

 "outputsStartIndex": 0,

 "inputNullifier": [

 "3217299130395714092375048112053367579529963253380286404242381776442753918543",

 "10338137275517050404818090901831522193036630945261272796204366916420718187042"

],

 "inSignature": [

 "5609147781996121559202758336514417651087410452588524961110093556834322927839",

 "7684119861868953362809411662523568231537908702992356876997581542021110158881"

],

 "inPublicKey": [

 "4309230837725745671052431107707725589237023471362445678307480723432139544372",

 "4309230837725745671052431107707725589237023471362445678307480723432139544372"

],

 "inAmount": ["0", "0"],

 "inBlinding": [

 "155030504778121016616625776637504540871481615842940226898405754575560440661",

 "160684339370557899170855270602669397810112520220487561059681779990351273904"

],

 "inPathIndices": [0, 0],

 "outputCommitment": [

 "1",

 "55"

]

 }

]

fINDINgS REPORT 16

The transaction set may consist of only one element (the starting deposit) and is labeled as

isLastStep = 1 , with only inputNullifiers in this list of valid data.

Since the element is labeled isLastStep = 1 , the txRecord check in merkleRoot is not

performed at #120 .

As the UTXO inputs have inAmount = 0 , the checks for accInnocentCommitments and

merkleProof are skipped at #160 .

The constructed Proof will be valid for the validator because the validator knows step_in

and step_out , which will be like a hash from inputNullifiers .

Recommendation

We recommend revisiting the logic of using the isLastStep parameter as well as

addressing issues related to ignoring merkle root checks.

Update

Client's response

There is a check in #150 to check if input nullifiers have correct inAmounts, So having the

above prove just proves that the nullifiers with amount 0 are member of the inclusion but

since they have 0 amount, this can't be from any valid withdrawal.

Oxorio's response:

This finding describes the scenario when the nova recursion consists of only 1 element and

isLastStep = 1 . In terms of the current audited scope, having a call to the special ASP

service with specific validations is not a required condition. The main idea of this finding is

to initiate a conversation and understand how validation in such a case is expected. We

understand that validations can be implemented in the ASP system or in the relayer.

However, this is an off-chain part of the protocol and is not included in the audited scope.

Additionally, there is a lack of documentation describing how this is expected to work. In the

current scope, this finding is valid.

Client's response:

Here is the verification process.

https://github.com/ProofOfInnocence/privacy-pools-v1-relayer/blob/0ad1a01f484e662a000819f436a23c6afb489b7b/src/modules/queue/transaction.processor.ts#L217

fINDINgS REPORT 17

Location

Description

In the transact function of the PrivacyPool contract, there is an insertion of 2 leaves

with every deposit and withdrawal to the pool. The merkle tree has a limitation based on

the merkle tree depth. For example, with a merkle tree depth of 20 , the maximal amount of

leaves is 2**20 = 1048576 . Considering that with every deposit and withdrawal, there will

be an insertion of 2 leaves, there is a maximal amount of deposits equal to

1048576 / 4 = 262144 . If the pool accumulates more than 262144 deposits over time,

some users may be unable to withdraw their funds from the pool. Consider the following

scenario:

A pool is deployed with no initial deposits, and the merkle tree depth level is 2**20 .

Over time, users deposit and withdraw their funds, resulting in a total of 262144 + 1

deposits, creating at least 524290 leaves in the merkle tree.

Subsequently, all users decide to withdraw funds, requiring 524290 leaves for

withdrawals. However, due to limitations, only 1048576 - 524290 = 524286 leaves

are available, allowing only 262143 users out of 262145 total deposits to withdraw

funds.

The funds of the last 2 users will be blocked in the pool forever without the possibility

to withdraw, as the transact function call will revert in the _insert call with the

error message Merkle tree is full. No more leaves can be added .

It's worth noting that there is no validation on the amount of deposit or withdrawal.

Therefore, a hacker can exploit this by calling the transact function in a loop with zero

amounts, creating an enormous quantity of leaves in the merkle root. This could potentially

block funds of users in the protocol, especially on a blockchain with low gas fees.

C-03
Limitation of merkle tree for withdrawals in

PrivacyPool

Severity CRITICAL

Status • ACKNOWLEDGED

File Location Line

 contract PrivacyPool > function transact 69

 contract MerkleTreeWithHistory > function _insert 52

PrivacyPool.sol

MerkleTreeWithHistory.sol

1.

2.

3.

4.

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L69
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L52

fINDINgS REPORT 18

Recommendation

We recommend adding a minimal deposit amount, defining a maximal quantity of deposits,

and reviewing the case when the merkle tree is full.

Update

Client's response

We will add a new function escapeWithdraw which will not add anything to merkle tree.

fINDINgS REPORT 19

Location

Description

In the protocol, the lack of on-chain verification requires the proving party to prove the

validity of its input data to establish innocence. The process of proving innocence involves

revealing the step_in value, which includes accInnocentCommitments , potentially

exposing the user's identity through traceable commitment transactions.

Identity disclosure occurs as follows: the verifier can take all emitted NewCommitment events

from the PrivacyPool contract and compute poseidon(commitment, commitmentIndex)

to find a hash that matches the value provided by the prover. This way, the funds deposit

transaction will be discovered.

Another disclosure is possible if the user requests an allow list through a service, as the

circuit checks the validity of nullifiers, essentially disclosing that the requester has

knowledge of publicKey and blinding . By doing so, the user is revealing themselves.

Recommendation

We recommend revising the protocol logic to ensure user privacy, as this is one of the main

ideas behind the protocol.

Update

Client's response

The first step_in 's accInnocentCommitments will always be zeroValue , zeroValue .

There is no check for this but this check will be done in the verification. We already do it in

relayer.

C-04 User de-anonymization risk

Severity CRITICAL

Status • NO ISSUE

File Location Line

 template Step (PoI) -

 PrivacyPool 39

proofOfInnocence.circom

PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#39
https://github.com/ProofOfInnocence/privacy-pools-v1-relayer/blob/0ad1a01f484e662a000819f436a23c6afb489b7b/src/modules/queue/transaction.processor.ts#L217

fINDINgS REPORT 20

Location

Description

In the Step (PoI) template, the absence of explicit verification for transaction inclusion in

both the txRecordsMerkleRoot and allowedTxRecordsMerkleRoot compromises the

verification process. Although it checks whether the transaction is in either

txRecordsMerkleRoot or allowedTxRecordsMerkleRoot , an attacker can specify a

transaction that is in only one of the tries.

Recommendation

We recommend adding explicit checks to verify transaction inclusion in both tries to ensure

the integrity of the verification process.

Update

Client's response

While it is possible that malicious ASP could provide a Merkle tree which is not a subset of a

main Merkle tree, this seems to be out of scope of the protocol, as this both a self-evident

malicious behavior, and doesn't allow anything than just using an normal ASP that allows

every transaction.

Only potentially worrying scenario is a situation in which somehow the whole Merkle tree of

an ASP is not checked, leading to covert bypass of the requirements.

C-05 Unverified transaction inclusion in Step (PoI)

Severity CRITICAL

Status • ACKNOWLEDGED

File Location Line

 template Step (PoI) 117proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L117

fINDINgS REPORT 21

Location

Description

The Step (PoI) template lacks a nullifier uniqueness check. This allows an attacker to

specify identical nullifiers (and hence commitments) as inputs. A corresponding check is

present in the Transaction template to prevent this scenario.

For example, let's consider a scenario:

Since there is no check for the inclusion of txRecord in Merkle tries on the last step (when

isLastSpet == 1), the attacker can take advantage of this and pass two identical valid

commitments to the input, hence the nullifiers.

The step_out in the last step is the hash from the two nullifiers, and since the attacker was

able to change one of the nullifiers, they have altered the output parameter that the verifier

will use to verify the proof. Such a manipulated proof will be accepted as valid.

Recommendation

We recommend implementing a nullifier uniqueness check within the Step (PoI) circuit to

prevent the passage of identical nullifiers.

Update

Client's response

We check if nullifiers match like this.

C-06 Lack of nullifier uniqueness check in Step (PoI)

Severity CRITICAL

Status • NO ISSUE

File Location Line

 template Step (PoI) 32proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L32
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/circuits/transaction.circom#L109-L119
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/circuits/transaction.circom#L109-L119
https://github.com/ProofOfInnocence/privacy-pools-v1-relayer/blob/main/src/modules/queue/transaction.processor.ts#L253

fINDINgS REPORT 22

Location

Description

The Step (PoI) template does not validate outputCommitments , allowing users to pass

any value, including those belonging to others.

For example, let us consider a scenario involving an attacker engaged in a sequence of

transactions that incorporate illicit funds. In the proof process, they specify as an

outputCommitment a transaction from a completely different account with an inAmount of

0 in the penultimate step. At the last step, there is no transaction inclusion check, even as

an accInnocentCommitments check. As a result, a hash of two nullifiers will be returned as

a step_out associated with a third party commitment.

Recommendation

We recommend introducing checks to validate outputCommitments to enhance system

soundness.

Update

Client's response

outputCommitment is hashed with txRecord here, and then it is verified against either

txRecordsMerkleRoot or allowedTxRecordsMerkleRoot .

C-07 Missing output commitment validation in Step (PoI)

Severity CRITICAL

Status • NO ISSUE

File Location Line

 template Step (PoI) 32proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L32
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/dev/membership-proof/circuits/proofOfInnocence.circom#L92

fINDINgS REPORT 23

Location

Description

In the Step (PoI) template, the absence of the constraint

sumIns + publicAmount === sumOuts; compromises transaction integrity. While the

inAmount is validated against the UTXO, the publicAmount is left unconstrained, allowing

an attacker to insert arbitrary values into these signals.

For example, consider a scenario where the attacker modifies the publicAmount to any

chosen value.

The attacker has the ability to set the publicAmount to a value less than 240 bits, causing

the system to classify the transaction as a deposit. This allows the txRecordHash to be

checked against the allowedTxRecordsMerkleRoot instead of the txRecordsMerkleRoot ,

making it possible for the attacker to prove the current transaction in the wrong set of

transactions.

In addition, there is no mechanism in the last step of the recursion to ensure that the

transaction is included in the Merkle tries. As a result, the publicAmount can be

manipulated to any value without the need to prove inclusion in

allowedTxRecordsMerkleRoot .

Recommendation

We recommend implementing checks to ensure the correctness of amounts.

Update

Client's response

This is an already existing transaction, so it is checked in TC-Nova part.

C-08 Lack of sums validation in Step (PoI)

Severity CRITICAL

Status • NO ISSUE

File Location Line

 template Step (PoI) 32proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L32

fINDINgS REPORT 24

Location

Description

In the Step (PoI) template, the prover is given the flexibility to initiate the proof sequence

from any transaction within the account history. This provision allows an actor who has

deposited illicit funds to selectively start the verification of his transaction history from a

mid-point, effectively obfuscating the initial transactions involving the deposit of those illicit

funds. As a result, the actor can obscure the origin of the funds from the verifier, thereby

claiming innocence in a manner that is contrary to the operational integrity designed into

the protocol.

Example:

if the actor's transaction history has a length of 3 , he can start the proof with transaction

number 2 , and hide transaction 1 , which was a deposit of illicit funds.

Recommendation

We recommend mandating the provision of a complete transaction history to ensure

accountability and traceability within the system.

Update

Client's response

The first step_in 's accInnocentCommitments will always be zeroValue , zeroValue .

There is no check for this but this check will be done in the verification. We already do it in

relayer.

C-09 Partial transaction history acceptance in Step (PoI)

Severity CRITICAL

Status • NO ISSUE

File Location Line

 template Step (PoI) 32proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L32
https://github.com/ProofOfInnocence/privacy-pools-v1-relayer/blob/0ad1a01f484e662a000819f436a23c6afb489b7b/src/modules/queue/transaction.processor.ts#L217

fINDINgS REPORT 25

Location

Description

In the function calculatePublicAmount of the contract PrivacyPool , there is no

validation ensuring that _extData.extAmount is greater than _extData.fee . This omission

allows for the execution of deposit logic during withdrawals and vice versa.

For example, an attacker (malicious relayer) can potentially steal user funds during

withdrawal processes by manipulating the values of _extData.extAmount and

_extData.fee to achieve the expected publicAmount , but by changing the sign of

_extData.extAmount , which results in the execution of deposit logic instead of withdrawal.

Relayer attack during the withdrawal process:

The user wishes to withdraw 0.059 ETH from the pool. According to the circuit logic

and smart contract, this amount is reflected as publicAmount = -0.059 . To ensure

the correct operation of the circuit, the value FIELD_SIZE - publicAmount is used.

 function calculatePublicAmount(int256 _extAmount, uint256 _fee) public pure returns

(uint256) {

 //...

C-10
Fees may exceed the amount being sent in

PrivacyPool

Severity CRITICAL

Status • ACKNOWLEDGED

File Location Line

 contract PrivacyPool > function calculatePublicAmount 76

 contract PrivacyPool > function calculatePublicAmount 79

 contract PrivacyPool > function calculatePublicAmount 114

 contract ETHPrivacyPool.sol > function _processDeposit 23

 contract ETHPrivacyPool.sol > function _processWithdraw 35

 contract PrivacyPool > function _processDeposit 29

 contract ERC20PrivacyPool.sol > function _processWithdraw 41

PrivacyPool.sol

PrivacyPool.sol

PrivacyPool.sol

ETHPrivacyPool.sol

ETHPrivacyPool.sol

ERC20PrivacyPool.sol

ERC20PrivacyPool.sol

1.

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L76
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L79
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L114
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol#L23
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol#L35
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L29
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L41

fINDINgS REPORT 26

 return (publicAmount >= 0) ? uint256(publicAmount) : FIELD_SIZE - uint256(-publicAmount);

 }

The user generates a proof.

 function verifyProof(Proof memory _args) public view returns (bool) {

 if (_args.inputNullifiers.length == 2) {

 return

 verifier2.verifyProof(

 _args.proof,

 [

 uint256(_args.root),

 _args.publicAmount,

 uint256(_args.extDataHash),

 uint256(_args.inputNullifiers[0]),

 uint256(_args.inputNullifiers[1]),

 uint256(_args.outputCommitments[0]),

 uint256(_args.outputCommitments[1])

]

);

 } else {

 revert("unsupported input count");

 }

 }

The calculatePublicAmount function checks the values of _extData.extAmount

and _extData.fee .

However, this check does not take into account the possibility that _extData.fee

may exceed _extData.extAmount .

 function calculatePublicAmount(int256 _extAmount, uint256 _fee) public pure returns

(uint256) {

 require(_fee < MAX_FEE, "Invalid fee");

 require(_extAmount > -MAX_EXT_AMOUNT && _extAmount < MAX_EXT_AMOUNT, "Invalid ext

amount");

 //...

 }

In the second step, the attacker(relayer) provides the user with an extDataHash

generated from extData , where the values of _extData.extAmount = 0 and

_extData.fee = 0.059.

1.

1.

1.

fINDINgS REPORT 27

In the calculatePublicAmount function, the publicAmount value is calculated by

subtracting 0.059 from 0 . This results in a negative value of -0.059 .

 function calculatePublicAmount(int256 _extAmount, uint256 _fee) public pure returns

(uint256) {

 //...

 int256 publicAmount = _extAmount - int256(_fee);

 //...

 }

The check in the _transact function passes successfully.

 function _transact(Proof memory _args, ExtData memory _extData) internal nonReentrant {

 //...

 require(_args.publicAmount == calculatePublicAmount(_extData.extAmount, _extData.fee),

"Invalid public amount");

 //...

 }

Since the value of _extData.extAmount is positive, the attacker(relayer) triggers the

_processDeposit function to make a deposit.

 function _processDeposit(ExtData memory _extData) internal override {

 if (_extData.extAmount > 0) {

 require(msg.value == uint256(_extData.extAmount), "Invalid amount");

 require(uint256(_extData.extAmount) <= maximumDepositAmount, "amount is larger than

maximumDepositAmount");

 }

 }

The _processWithdraw function fails to execute, even though the user initiated a

withdrawal of 0.059 ETH.

If the value of _extData.fee is positive, the attacker(relayer) receives a commission

of 0.059 ETH to the specified relayer address (which can be any address).

 function _processWithdraw(Proof memory _args, ExtData memory _extData) internal override {

 //...

 if (_extData.fee > 0) {

 SafeTransferLib.safeTransferETH(_extData.relayer, _extData.fee);

2.

1.

1.

1.

2.

fINDINgS REPORT 28

 }

 }

According to the circuit, the transaction was successfully executed, and the

corresponding outputCommitments were added to the Merkle Tree.

In reality, the attacker(relayer) appropriates the entire amount that the user intended

to withdraw.

Here is a proof of concept of this attack.

Recommendation

We recommend revisiting these scenarios and adding validation to ensure that the fee does

not exceed the payment amount. This can be done by setting a maximum fee amount

(maxFeeAmount) or by adding other conditions to reduce the fee. It is also advisable to move

the if operator

 if (_extData.fee > 0) {

 SafeTransferLib.safeTransferETH(_extData.relayer, _extData.fee);

into the statement if (_extData.extAmount < 0) on the line 30.

Update

Client's response

The fix has been implemented in the new major version, which is being prepared for

release.

1.

2.

https://gist.github.com/oxorio-reports/6182b3e1d37c126ac67c79114d36b0d4#file-privacy_pools-hackrelayer-test-ts-L101
https://gist.github.com/oxorio-reports/6182b3e1d37c126ac67c79114d36b0d4#file-privacy_pools-hackrelayer-test-ts-L101
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/8ab7132877325e27b22053e974b3310d70b860b5/contracts/ETHPrivacyPool.sol#L30

fINDINgS REPORT 29

2.2 MAjOR

Location

Description

Since in the PrivacyPool contract the maximum deposit amount is 2^248 - 1 and the

circuit treats amounts above 2^240 as a withdrawal, this provokes treating a transaction

with an amount greater than 2^240 but less than 2^248 - 1 as a withdrawal while it is a

deposit, which is erroneous logic.

Recommendation

We recommend aligning the deposit amount logic between the contract and the circuit to

avoid misinterpretation of transaction types and other logic.

Update

Client's response

Fixed in commit 8ab7132877325e27b22053e974b3310d70b860b5 .

M-01 Deposit amount logic inconsistency

Severity MAJOR

Status • FIXED

File Location Line

 template Step (PoI) 114proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L114
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/8ab7132877325e27b22053e974b3310d70b860b5/membership-proof/circuits/proofOfInnocence.circom#L111
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/8ab7132877325e27b22053e974b3310d70b860b5/membership-proof/circuits/proofOfInnocence.circom#L111

fINDINgS REPORT 30

Location

Description

In the PrivacyPool contract, there is a lack of proof uniqueness validation for each specific

pool; the token address is not added to the proof. This allows executing replay attacks

across pools with identical states, even with the original pools of the Tornado Cash.

Consider the following scenario:

There is a deployment of 2 new pools; one pool has USDC tokens, another one has

WETH tokens.

Alice is the first depositor to the pool; she initiates a deposit to the USDC pool for 100

USDC tokens.

Alice withdraws her 100 USDC from the USDC pool.

Alice creates a deposit to the WETH pool for 100 WETH , also like a first depositor.

Bob takes the withdrawal proof of Alice from the USDC pool and uses it, withdrawing

Alice's WETH . Even though Bob wouldn't be able to withdraw the funds to himself,

since extDataHash must be the same and there is no way to change the recipient

address, Alice will lose a part of her money for the relayer fees. For example, if she

has used a fee of 20 USDC tokens with the withdrawal from the USDC pool, Alice

will lose 20 WETH tokens with Bob's withdrawal for the relayer fees.

This replay attack can be executed using historic values across all of the pools of the privacy

pools protocol or any other protocol, which will be using only amount , pubkey , and

blinding in the UTXO structure.

Recommendation

We recommend implementing mechanisms to ensure proof uniqueness and validate pool-

specific parameters to prevent replay attacks across pools. This can be done by adding the

token address of the pool to the UTXO.

M-02 Replay attack vulnerability in PrivacyPool

Severity MAJOR

Status • ACKNOWLEDGED

File Location Line

 -PrivacyPool.sol

1.

2.

3.

4.

5.

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol

fINDINgS REPORT 31

Update

Client's response

Acknowledged, as long as we are doing the first transaction, the states cannot be the same.

Additionally, both Tornado and Tornado Nova should be susceptible to this.

fINDINgS REPORT 32

Location

Description

In the functions _processDeposit and _processWithdraw of the ERC20PrivacyPool

contract, the SafeERC20 library is not used.

Tokens not compliant with the ERC20 specification could return false from the transfer

functions call to indicate the transfer fails, while the calling contract would not notice the

failure if the return value is not checked. Checking the return value is a requirement, as

written in the EIP-20 specification:

Callers MUST handle false from returns (bool success). Callers MUST NOT assume that

false is never returned!

Recommendation

We recommend using the SafeERC20 library implementation from OpenZeppelin and call

safeTransfer or safeTransferFrom when transferring ERC20 tokens.

Update

Client's response

Confirmed, we will fix this.

M-03 Unchecked transfers in ERC20PrivacyPool

Severity MAJOR

Status • ACKNOWLEDGED

File Location Line

 contract ERC20PrivacyPool > function _processDeposit 31

 contract ERC20PrivacyPool > function _processWithdraw 38

ERC20PrivacyPool.sol

ERC20PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L31
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L38

fINDINgS REPORT 33

Location

Description

In the function _processDeposit of the ERC20PrivacyPool contract, there is no check on

how many tokens the contract actually received after the transfer.

Some tokens may charge a transfer fee or, conversely, add some amount to the transfer.

Such tokens become a problem for the protocol, as the real amount will be different from

the one specified in the transferFrom .

Recommendation

We recommend considering the amount received for the transfer rather than relying on the

amount specified in the transferFrom call.

Update

Client's response

Acknowledged, we don't plan to support such tokens.

Oxorio's response

We would like to point out that even the USDT has the option to include the fee in its

contract code.

M-04
Actual token received amount isn't checked in ERC20Pr

ivacyPool

Severity MAJOR

Status • ACKNOWLEDGED

File Location Line

 contract ERC20PrivacyPool > function _processDeposit 31ERC20PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L31

fINDINgS REPORT 34

Description

During communication with the client, it was discovered that shielded transfers should be

prohibited in the system, yet they remain possible. In the current implementation, receiving

a shielded transfer blocks the ability to prove innocence, as the recipient cannot prove the

transaction history of the funds received, which is known only to the sender.

Recommendation

We recommend blocking the possibility to send shielded transfers to ensure the system

functions as expected.

Update

Client's response

No need to block shielded transactions, since if they want to provide membership proof,

they should be using the protocol appropriate, additionally, in the future case where PoI is

implemented for shielded transactions, we can use the same contracts.

M-05 Shielded transfers are possible in the system

Severity MAJOR

Status • ACKNOWLEDGED

fINDINgS REPORT 35

2.3 WARNINg

Location

Description

In the constructor of the PrivacyPool contract, there is no validation of the

_maximumDepositAmount variable, and there is no setter function, which will allow changing

the variable after the deployment. If the variable is set to a 0 value, all the deposits to the

contract will be blocked.

Recommendation

We recommend adding an additional setter for the _maximumDepositAmount function and

incorporating validation of the _maximumDepositAmount variable in the constructor .

Update

Client's response

The contract is immutable and has no governance, so we cannot have a setter as we can't

have onlyOwner type of access control. Additionally, we see no need to assert

_maximumDepositAmount to be non-zero as that case needs a redeployment only and

should be handled by the deployers of the contracts.

W-01
Missing validation of the _maximumDepositAmount in

PrivacyPool

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract PrivacyPool > constructor 64PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L64

fINDINgS REPORT 36

Location

Description

In the constructor of the PrivacyPool and ERC20PrivacyPool contracts, there is no

validation of the _token and _verifier2 contracts for the support of the correct interface,

as well as whether these addresses are empty or not. If these addresses are provided

incorrectly, there is no function to change their values, so the contracts will have to be

redeployed.

Recommendation

We recommend using ERC165Checker for validating the interface support, as well as

validating addresses for zero values.

Update

Client's response

These should be checked by the deployers of the contracts.

W-02
Missing validations in PrivacyPool ,

ERC20PrivacyPool

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract PrivacyPool > constructor 63

 contract ERC20PrivacyPool > constructor 24

PrivacyPool.sol

ERC20PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L63
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L24

fINDINgS REPORT 37

Location

Description

In the functions _processWithdraw of contracts ERC20PrivacyPool , ETHPrivacyPool ,

there is a check before the withdrawal:

require(_extData.recipient != address(0), "Can't withdraw to zero address");

However, there is no validation that the relayer address is not zero, allowing burning

tokens with the incorrect input. For example, if the user decides to execute a withdrawal by

himself, leaving the relayer address as the zero address but specifying the fee value as

non-zero, the tokens will be lost.

Recommendation

We recommend adding validation for a zero address.

Update

Client's response

Acknowledged, in the usual operation, all transactions should be executed by relayers for

privacy purposes, but if a user chose to leave the field empty they should be able to.

W-03
Relayer address can be zero in ERC20PrivacyPool , ET

HPrivacyPool

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract ERC20PrivacyPool > function _processWithdraw 42

 contract ETHPrivacyPool > function _processWithdraw 36

ERC20PrivacyPool.sol

ETHPrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L42
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol#L36

fINDINgS REPORT 38

Location

Description

In the constructor of contract PrivacyPool , there is no limitation on the minimal value

for withdrawal, which exposes risks of the DDoS attack, since any user can create a lot of

withdrawal requests to the relayer.

Recommendation

We recommend adding a minimal value for the withdrawal.

Update

Client's response

We will add a new function escapeWithdraw which will not add anything to merkle tree.

W-04 No minimal value of withdrawal in PrivacyPool

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract PrivacyPool > constructor 59PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L59

fINDINgS REPORT 39

2.4 INfO

Location

Description

In ETHPrivacyPool , ERC20PrivacyPool , PrivacyPool contracts, there is a redundant

declaration of ABIEncoderV2 , which is present by default in the compiler starting from

version 0.8.0 . Additionally, all contracts have a floating pragma.

Recommendation

We recommend removing the redundant declaration of ABIEncoderV2 and specifying the

compiler version to a fixed and recent version of the Solidity compiler.

Update

Client's response

Confirmed, will fix.

I-01
Floating pragma, experimental encoder in

ETHPrivacyPool , ERC20PrivacyPool , PrivacyPool

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 3

 3

 3

ERC20PrivacyPool.sol

PrivacyPool.sol

ETHPrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L3
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L3
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol#L3
https://docs.soliditylang.org/en/v0.8.24/080-breaking-changes.html#silent-changes-of-the-semantics
https://docs.soliditylang.org/en/v0.8.24/080-breaking-changes.html#silent-changes-of-the-semantics

fINDINgS REPORT 40

Location

Description

In the mentioned locations, there are unused parts of the code.

Recommendation

We recommend removing the unused and commented code to keep the codebase clean.

Update

Client's response

Confirmed, will fix.

I-02 Unused code in proofOfInnocence.circom

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 45

 64

 123

 127

 134

proofOfInnocence.circom

proofOfInnocence.circom

proofOfInnocence.circom

proofOfInnocence.circom

proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L45
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L64
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L123
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L127
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L134

fINDINgS REPORT 41

Location

Description

In proofOfInnocence.circom circuit, the original Poseidon hasher is used, whereas

Poseidon 2, a faster and more efficient version, is already available (Poseidon 2).

Recommendation

We recommend updating to Poseidon 2 instead of using the original version of Poseidon.

Update

Client's response

Tornado Nova uses it, thats why we use the same.

I-03 Usage of old Poseidon in proofOfInnocence.circom

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 66proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L66
https://medium.com/@horizenlabs-tech/introducing-poseidon2-559c1b33b102

fINDINgS REPORT 42

Location

Description

The ProofOfInnocence.circom file includes unused imports for

merkleTreeUpdater.circom and keypair.circom , leading to unnecessary code

complexity.

Recommendation

We recommend removing the unused imports to simplify the codebase.

Update

Client's response

Confirmed, will fix.

I-04 Unused imports in Step (PoI)

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 7-8proofOfInnocence.circom

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/membership-proof/circuits/proofOfInnocence.circom#L7-L8

fINDINgS REPORT 43

Location

Description

In the function zeros of contract MerkleTreeWithHistory , the linear search approach is

used to return a bytes32 value based on the input index i . A binary search algorithm can

significantly optimize gas usage by reducing the average number of comparisons needed to

find the corresponding bytes32 value for an index, especially within a sorted structure like

the one presented.

Recommendation

We recommend refactoring the zeros function to implement a binary search algorithm.

This change would enhance the function's gas efficiency by minimizing the number of

conditional checks required to return the corresponding bytes32 value.

Update

Client's response

This function is directly taken from Tornado, so acknowledged.

I-05 Inefficient gas usage in MerkleTreeWithHistory

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract MerkleTreeWithHistory > function zeros 109MerkleTreeWithHistory.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L109

fINDINgS REPORT 44

Location

Description

In the mentioned locations, the require function is used to check the correctness of the

data, but custom errors can be used instead.

Custom errors from solc 0.8.4 are cheaper than revert strings (cheaper deployment cost

and runtime cost when the revert condition is met).

I-06
Use of custom errors for efficiency and improved

information in MerkleTreeWithHistory

Severity INFO

Status • NO ISSUE

File Location Line

 contract MerkleTreeWithHistory > constructor 27

 contract MerkleTreeWithHistory > constructor 28

 contract MerkleTreeWithHistory > function hashLeftRight 43

 contract MerkleTreeWithHistory > function hashLeftRight 44

 contract MerkleTreeWithHistory > function _insert 54

 contract PrivacyPool > function calculatePublicAmount 77

 contract PrivacyPool > function calculatePublicAmount 78

 contract PrivacyPool > function _transact 109

 contract PrivacyPool > function _transact 113

 contract PrivacyPool > function _transact 114

 contract PrivacyPool > function _transact 115

 contract PrivacyPool > function _processDeposit 24

 contract PrivacyPool > function _processDeposit 25

 contract PrivacyPool > function _processWithdraw 31

 contract PrivacyPool > function _processDeposit 28

 contract PrivacyPool > function _processDeposit 30

 contract PrivacyPool > function _processWithdraw 37

MerkleTreeWithHistory.sol

MerkleTreeWithHistory.sol

MerkleTreeWithHistory.sol

MerkleTreeWithHistory.sol

MerkleTreeWithHistory.sol

PrivacyPool.sol

PrivacyPool.sol

PrivacyPool.sol

PrivacyPool.sol

PrivacyPool.sol

PrivacyPool.sol

ETHPrivacyPool.sol

ETHPrivacyPool.sol

ETHPrivacyPool.sol

ERC20PrivacyPool.sol

ERC20PrivacyPool.sol

ERC20PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L27
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L28
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L43
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L44
https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L54
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L77
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L78
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L109
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L109
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L109
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L109
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol#L24
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol#L25
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ETHPrivacyPool.sol#L31
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L28
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L30
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/ERC20PrivacyPool.sol#L37

fINDINgS REPORT 45

Source:

Starting from Solidity v0.8.4, there is a convenient and gas-efficient way to explain to

users why an operation failed through the use of custom errors. Until now, you could

already use strings to give more information about failures (e.g., revert("Insufficient

funds.");), but they are rather expensive, especially when it comes to deploy cost, and it is

difficult to use dynamic information in them.

Recommendation

We recommend using custom errors instead of require .

Update

Client's response

We think require is more readable.

https://blog.soliditylang.org/2021/04/21/custom-errors/

fINDINgS REPORT 46

Location

Description

In the mentioned locations, variables are assigned a default value.

If a variable is not initialized, it is assumed to have the default value (0 for uint , false for

bool , address(0) for address ...). Explicitly initializing it with its default value is an anti-

pattern and wastes gas.

Recommendation

We recommend removing the assignment of default values.

Update

Client's response

I think this way is more readable.

I-07
No need to explicitly initialize variables with default

values

Severity INFO

Status • NO ISSUE

File Location Line

 contract MerkleTreeWithHistory 23-24

 contract MerkleTreeWithHistory 32

 contract PrivacyPool > function _transact 110

 contract PrivacyPool > function _transact 117

MerkleTreeWithHistory.sol

MerkleTreeWithHistory.sol

PrivacyPool.sol

PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L23-L24
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/MerkleTreeWithHistory.sol#L32
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L110
https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L117

fINDINgS REPORT 47

Location

Description

In the function _transact of contract PrivacyPool , the variables

_args.inputNullifiers , _args.outputCommitments , and nextIndex are emitted in

multiple events within the same transaction. These emissions occur first through individual

NewCommitment and NewNullifier events for each input nullifier and output commitment,

and subsequently in a collective NewTxRecord event. This redundant emission of variables

across different events in the same transaction scope can lead to unnecessary gas

consumption and data redundancy on the blockchain.

Recommendation

We recommend optimizing the event emissions to reduce redundancy and potential gas

costs. Consider consolidating event logs or reviewing the necessity of emitting the same

information through multiple events, particularly when they pertain to the same transaction

context. This approach can enhance efficiency and clarity in contract events management.

Client's response

NewTxRecord event is crutial for ASP's and screning, NewCommitmen t and NewNullifier

events are crucial for making a transaction.

I-08 Redundant event emissions in PrivacyPool

Severity INFO

Status • NO ISSUE

File Location Line

 contract PrivacyPool > function _transact 123-134PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L123-L134

fINDINgS REPORT 48

Location

Description

In the contract PrivacyPool , the __gap variable is used for storage padding to prevent

storage collisions, typically seen in upgradeable contracts. However, since PrivacyPool is

not an upgradeable contract, this padding is unnecessary and may lead to confusion or

misinterpretation regarding the contract's design and upgradeability.

Recommendation

We recommend removing the __gap variable to streamline the contract's storage layout,

enhancing clarity and reducing potential misunderstandings about its upgradeability.

Update

Client's response

Confirmed, will fix.

I-09 Redundant storage padding in PrivacyPool

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract PrivacyPool 16PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L16

fINDINgS REPORT 49

Location

Description

In the function calculatePublicAmount of contract PrivacyPool , instead of using the &&

operator in a single require statement to check multiple conditions, it is better to use

multiple require statements with 1 condition per require (saving 3 gas per &&).

Recommendation

We recommend using multiple require statements with 1 condition per require .

Update

Client's response

Confirmed, maybe will fix.

I-10
Complex require logic consumes more gas in Privac

yPool

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract PrivacyPool > function calculatePublicAmount 78PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L78

fINDINgS REPORT 50

Location

Description

In the function verifyProof of contract PrivacyPool , there is an

if (_args.inputNullifiers.length == 2) statement, which is redundant since

inputNullifiers is a fixed-size bytes32[2] array, making this condition always true.

 struct Proof {

 ...

 bytes32[2] inputNullifiers;

 ...

 }

Recommendation

Remove the redundant condition to improve code clarity, as the array's fixed size makes this

check unnecessary.

Update

Client's response

Confirmed, maybe will fix.

I-11 Redundant condition in PrivacyPool

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 PrivacyPool > function verifyProof 89PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/tree/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L89

fINDINgS REPORT 51

Location

Description

In the function _transact of contract PrivacyPool , the nextIndex storage variable is

read from storage multiple times to calculate indices for NewCommitment and NewTxRecord

events. Each read operation from storage consumes more gas than reading from the stack.

Given that nextIndex is incremented once per transaction (by 2) in _insert , its value

does not change during the following execution of _transact , making multiple storage

reads unnecessary and gas-inefficient.

Recommendation

We recommend caching nextIndex in a local variable after the _insert function call. This

approach involves a single read from storage, followed by subsequent reads from the much

cheaper stack for calculating indices in event emissions. This optimization will reduce the

function's gas consumption, enhancing overall efficiency.

Update

Client's response

Confirmed, will fix.

I-12 Inefficient use of storage in PrivacyPool

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 PrivacyPool > function _transact 123-134PrivacyPool.sol

https://github.com/ProofOfInnocence/privacy-pools-v1/blob/e221f0b88e52fb5c214726e765997ef4067793a9/contracts/PrivacyPool.sol#L123-L134

APPENDIX

3

APPENDIX 53

3.1 DISCLAIMER

The audit makes no statements or warranties about the utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the platform or

its products, regulatory regime for the business model, or any other statements about the

fitness of the contracts to purpose, or their bug free status. The audit documentation is for

discussion purposes only.

At the request of client, Oxorio consents to the public release of this audit report. The

information contained in this audit report is provided "as is," without any representations or

warranties whatsoever. Oxorio disclaims any responsibility for damages that may arise from

or in relation to this audit report. Oxorio retains copyright of this report.

APPENDIX 54

3.2 SECURITY ASSESSMENT

METhODOLOgY

Oxorio's smart contract audit methodology is designed to ensure the security, reliability,

and compliance of smart contracts throughout their development lifecycle. Our process

integrates the Smart Contract Security Verification Standard (SCSVS) with our advanced

techniques to address complex security challenges. For a detailed look at our approach,

please refer to the full version of our methodology. Here is a concise overview of our

auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 55

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 56

3.3 fINDINgS CLASSIfICATION

REfERENCE

3.3.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

3.3.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 57

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding. Recommended fixes for this finding

are planned to be made. This finding does not affect the overall security of

the project.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 58

3.4 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

ThANK YOU fOR ChOOSINg

	Privacy Pools Smart Contracts Security Audit Report
	Audit Overview
	Project Brief
	Audited Files
	Project Overview
	Summary of findings
	Conclusion

	Findings Report
	CRITICAL
	C-01 A dishonest prover can manipulate the proof in IsNum2Bits
	Location
	Description
	Recommendation
	Update
	Client's response

	C-02 Possible bypass of validation through invalid input for membership proof
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response:
	Client's response:

	C-03 Limitation of merkle tree for withdrawals in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	C-04 User de-anonymization risk
	Location
	Description
	Recommendation
	Update
	Client's response

	C-05 Unverified transaction inclusion in Step (PoI)
	Location
	Description
	Recommendation
	Update
	Client's response

	C-06 Lack of nullifier uniqueness check in Step (PoI)
	Location
	Description
	Recommendation
	Update
	Client's response

	C-07 Missing output commitment validation in Step (PoI)
	Location
	Description
	Recommendation
	Update
	Client's response

	C-08 Lack of sums validation in Step (PoI)
	Location
	Description
	Recommendation
	Update
	Client's response

	C-09 Partial transaction history acceptance in Step (PoI)
	Location
	Description
	Recommendation
	Update
	Client's response

	C-10 Fees may exceed the amount being sent in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	MAJOR
	M-01 Deposit amount logic inconsistency
	Location
	Description
	Recommendation
	Update
	Client's response

	M-02 Replay attack vulnerability in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	M-03 Unchecked transfers in ERC20PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	M-04 Actual token received amount isn't checked in ERC20PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	M-05 Shielded transfers are possible in the system
	Description
	Recommendation
	Update
	Client's response

	WARNING
	W-01 Missing validation of the _maximumDepositAmount in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	W-02 Missing validations in PrivacyPool, ERC20PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	W-03 Relayer address can be zero in ERC20PrivacyPool, ETHPrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	W-04 No minimal value of withdrawal in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	INFO
	I-01 Floating pragma, experimental encoder in ETHPrivacyPool, ERC20PrivacyPool, PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	I-02 Unused code in proofOfInnocence.circom
	Location
	Description
	Recommendation
	Update
	Client's response

	I-03 Usage of old Poseidon in proofOfInnocence.circom
	Location
	Description
	Recommendation
	Update
	Client's response

	I-04 Unused imports in Step (PoI)
	Location
	Description
	Recommendation
	Update
	Client's response

	I-05 Inefficient gas usage in MerkleTreeWithHistory
	Location
	Description
	Recommendation
	Update
	Client's response

	I-06 Use of custom errors for efficiency and improved information in MerkleTreeWithHistory
	Location
	Description
	Recommendation
	Update
	Client's response

	I-07 No need to explicitly initialize variables with default values
	Location
	Description
	Recommendation
	Update
	Client's response

	I-08 Redundant event emissions in PrivacyPool
	Location
	Description
	Recommendation
	Client's response

	I-09 Redundant storage padding in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	I-10 Complex require logic consumes more gas in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	I-11 Redundant condition in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	I-12 Inefficient use of storage in PrivacyPool
	Location
	Description
	Recommendation
	Update
	Client's response

	Appendix
	Disclaimer
	Security Assessment Methodology
	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

