
JUNE 5, 2024

MANSA SMART

CONTRACTS

SECURITY

AUDIT REPORT

2

CONTENTS

1. AUDIT OVERVIEW ... 4

1.1. PROJECT BRIEF ... 5

1.2. PROJECT TIMELINE .. 6

1.3. AUDITED FILES ... 7

1.4. PROJECT OVERVIEW .. 8

1.5. CODEBASE QUALITY ASSESSMENT ... 9

1.6. SUMMARY OF FINDINGS .. 11

1.7. CONCLUSION ... 13

2. FINDINGS REPORT ... 14

2.1. CRITICAL ... 15

C-01 Comparison of two variables with different decimals in Mansa .. 15

C-02 Possible irrevocable deletion of a tranche along with user funds in Mansa 17

C-03 Admin loses ability to withdraw excessUsdc after user redemptions in Mansa 18

2.2. MA JOR .. 19

M-01 Insufficient state transition checks for tranches in Mansa ... 19

M-02 Missing validation for custodianAddress_ in Mansa .. 21

2.3. WARNING ... 22

W-01 Missing validation for redeemRatioBip_ in Mansa ... 22

W-02 "Dust" on balance after redemption blocks tranche deletion in Mansa 24

W-03 Possible redemption of zero USDC in Mansa .. 26

W-04 Funds of a removed user from the whitelist are locked in the contract in Whitelist 28

2.4. INFO .. 29

I-01 Absence of whitelist allows injection and distribution of "dirty" cryptocurrency in Mansa 29

I-02 Calculation of the difference in decimals can be moved to a constant in Mansa 31

I-03 Magic number in Mansa .. 32

3

I-04 State Invalid is not used in Mansa.sol ... 33

I-05 Floating pragma .. 34

I-06 Usage of string instead of uint128 for storing UUID in Mansa .. 35

I-07 Unused duration field in Mansa ... 36

3. APPENDIX ... 37

3.1. DISCLAIMER ... 38

3.2. SECURITY ASSESSMENT METHODOLOGY .. 39

3.3. CODEBASE QUALITY ASSESSMENT REFERENCE .. 41

Rating Criteria ... 42

3.4. FINDINGS CLASSIFICATION REFERENCE ... 43

Severity Level Reference .. 43

Status Level Reference ... 43

3.5. ABOUT OXORIO ... 45

AUDIT

OVERVIEW1

AUDIT OVERVIEW 5

1.1 PROJECT BRIEf

Title Description

Client Mansa

Project name Mansa

Category Decentralized Finance

Website https://www.mansafinance.co/

Repository https://github.com/mansafinance/mansa-contracts

Documentation -

Initial Commit d375a4ba61042687fd7264091d550605dbef655d

Final Commit 4005d0db4024befd8ad9994ae05f4721367f92ae

Platform L2

Network Base / Polygon / Arbitrum

Languages Solidity

Lead Auditor Artem Belozerov - artem@oxor.io

Project Manager Viktor Mikhailov - viktor@oxor.io

https://www.mansafinance.co/
https://github.com/mansafinance/mansa-contracts
https://github.com/mansafinance/mansa-contracts/blob/d375a4ba61042687fd7264091d550605dbef655d
https://github.com/mansafinance/mansa-contracts/blob/4005d0db4024befd8ad9994ae05f4721367f92ae
mailto:artem@oxor.io
mailto:am@oxor.io

AUDIT OVERVIEW 6

1.2 PROJECT TIMElINE

The key events and milestones of the project are outlined below.

Date Event

May 24, 2024 Client approached Oxorio requesting an audit.

May 27, 2024 The audit team commenced work on the project.

May 31, 2024 Submission of the comprehensive report.

June 3, 2024 Client feedback on the report was received.

June 5, 2024 Submission of the final report incorporating client’s verified fixes.

AUDIT OVERVIEW 7

1.3 AUDITED fIlES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that estimates

logical depth and decision points like loops and conditional branches) by the number of

executable lines of code. A higher value suggests greater complexity per line, indicating

areas with concentrated logic.

File Lines Blanks Comments Code Complexity

1 contracts/DummyWhitelist.sol 11 2 1 8 0

2 contracts/Mansa.sol 146 16 2 128 12

3 contracts/MansaTrancheToken.sol 36 6 1 29 14

4 contracts/TestToken.sol 16 4 1 11 0

5 contracts/Whitelist.sol 20 4 1 15 13

Total 229 32 6 191 11

https://github.com/boyter/scc
https://github.com/mansafinance/mansa-contracts/blob/d375a4ba61042687fd7264091d550605dbef655d/contracts/DummyWhitelist.sol
https://github.com/mansafinance/mansa-contracts/blob/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol
https://github.com/mansafinance/mansa-contracts/blob/d375a4ba61042687fd7264091d550605dbef655d/contracts/MansaTrancheToken.sol
https://github.com/mansafinance/mansa-contracts/blob/d375a4ba61042687fd7264091d550605dbef655d/contracts/TestToken.sol
https://github.com/mansafinance/mansa-contracts/blob/d375a4ba61042687fd7264091d550605dbef655d/contracts/Whitelist.sol
https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 8

1.4 PROJECT OVERVIEW

The project allows users to invest funds, which are then transferred to a custodian who

generates profit.

In the first stage, users invest their funds into a specific tranche, receiving Mansa tokens in

return. These funds are subsequently transferred to the custodian. Later, the funds, along

with the generated profit, are returned to the protocol, allowing users to redeem the initial

funds and the accrued profit for their Mansa tokens.

AUDIT OVERVIEW 9

1.5 CODEBASE QUAlITY

ASSESSMENT

The Codebase Quality Assessment table offers a comprehensive assessment of various code

metrics, as evaluated by our team during the audit, to gauge the overall quality and maturity

of the project’s codebase. By evaluating factors such as complexity, documentation and

testing coverage to best practices, this table highlights areas where the project excels and

identifies potential improvement opportunities. Each metric receives an individual rating,

offering a clear snapshot of the project's current state, guiding prioritization for refactoring

efforts, and providing insights into its maintainability, security, and scalability. For a detailed

description of the categories and ratings, see the Codebase Quality Assessment Reference

section.

Category Assessment Result

Access Control

The project implements a clear and simple access control

mechanism. However, specific concerns outlined in I-01

warrant further review to reinforce the robustness of these

operations.

Good

Arithmetic

The project has several issues with mathematical operations,

particularly those related to rounding during division and

working with tokens of different decimals. It is crucial to

address these shortcomings meticulously to enhance the

overall reliability of the system.

Poor

Complexity
The project structure is simple and comprehensible, which

positively impacts code readability and ease of work.
Excellent

Data Validation

The project performs data validation across many

components, but a significant portion of the issues

highlighted in this report stem from insufficient validation

processes. It is crucial to enhance the validation

mechanisms to address these deficiencies and improve the

overall robustness of the system.

Poor

Decentralization

The project does not incorporate a decentralized approach

to management, and therefore, the metric is not applicable

in this context.

Not

Applicable

Documentation

The project lacks any form of documentation, and

comments in the codebase are virtually non-existent. The

absence of a description of the project's architecture and its

functional components hinders the quick understanding of

the overall system structure and its operational sequence.

Absent

AUDIT OVERVIEW 10

Category Assessment Result

External

Dependencies

The project lacks significant external dependencies, except

for the transfer of invested funds to the custodian's address,

which could be a critical point if the custodian is

compromised. However, the custodian's operations are

beyond the scope of this audit. Nonetheless, to enhance the

overall reliability from the protocol's side, greater care

should be taken in the custodian's address validation

process, as mentioned in the report in M-02 .

Not

Applicable

Error Handling

The project demonstrates competent exception handling

throughout the codebase. However, it is important to

address the issues outlined in the report that highlight

potential error scenarios.

Excellent

Logging and

Monitoring

The project involves token transfers that emit events,

providing an opportunity for logging. However, transfer

events alone are insufficient for a comprehensive logging

system that would effectively utilize third-party monitoring

services. Adding alerts for key events within the system will

facilitate real-time data analysis and enhance the ability to

accurately track system performance and security incidents.

Poor

Low-Level Calls

The project is free from low-level calls, ensuring a higher

level of security by avoiding potential pitfalls associated with

direct, low-level interactions with the blockchain.

Not

Applicable

Testing and

Verification

The project includes tests that verify core functionality with

valid data. However, not all tests are current and operational

out of the box. Additionally, the low number of tests and

limited code coverage create noticeable gaps in testing,

especially in critical scenarios that remain untested, leading

to issues described in the report. Addressing these gaps will

improve the reliability of the testing environment and ensure

more comprehensive verification of system behavior under

various conditions.

Poor

AUDIT OVERVIEW 11

1.6 SUMMARY Of fINDINgS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 3 0 3 0 0

MA JOR 2 0 2 0 0

WARNING 4 0 3 0 1

INFO 7 0 4 0 3

TOTAL 16 0 12 0 4

AUDIT OVERVIEW 12

This table provides an overview of the findings across the audited files, categorized by

severity level. The table enables to quickly identify areas that require immediate attention

and prioritize remediation efforts accordingly.

File TOTAL CRITICAL MA JOR WARNING INFO

contracts/Mansa.sol 14 3 2 3 6

contracts/Whitelist.sol 1 0 0 1 0

https://github.com/mansafinance/mansa-contracts/blob/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol
https://github.com/mansafinance/mansa-contracts/blob/d375a4ba61042687fd7264091d550605dbef655d/contracts/Whitelist.sol

AUDIT OVERVIEW 13

1.7 CONClUSION

Overall, the project architecture is simple and understandable, which positively impacts the

perception of the codebase. However, the project has problematic areas, particularly in

arithmetic operations, insufficient data validation, and edge case handling. We advise

thoroughly analyzing and addressing the issues described below to enhance the reliability

and security of the system. By resolving these identified problems, the project can

significantly improve its resilience to potential vulnerabilities and ensure a more robust

operational structure.

fINDINgS

REPORT2

fINDINgS REPORT 15

2.1 CRITICAl

Location

Description

In the function transitionTrancheState of the Mansa contract, the comparison occurs

between the USDC balance - tranche.usdcBalance , and the maximum redeemable USDC

amount - maxRedeemableUsdcAmount . Here, tranche.usdcBalance is stored with 6

decimals, whereas maxRedeemableUsdcAmount is calculated with 18 decimals, since

tranche.redeemableTokenSupply has 18 decimals:

tranche.redeemableTokenSupply = tranche.token.totalSupply();

uint256 maxRedeemableUsdcAmount = tranche.redeemableTokenSupply * tranche.redeemRatioBip /

10000;

if (tranche.usdcBalance > maxRedeemableUsdcAmount) {

 // ...

This causes the if block condition to work incorrectly, as tranche.usdcBalance equal to

150 USDC with 6 decimals will be less than maxRedeemableUsdcAmount equal to 110

USDC with 18 decimals.

Recommendation

We recommend comparing the current balance and the maximum redeemable amount by

converting them to the same decimals.

C-01
Comparison of two variables with different decimals in

Mansa

Severity CRITICAL

Status • FIXED

File Location Line

 contract Mansa > function transitionTrancheState 112Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L112

fINDINgS REPORT 16

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

fINDINgS REPORT 17

Location

Description

In the function createTranche of the Mansa contract, when creating a tranche, the admin

maps the uuid to the new tranche. There is no check for the existence of a tranche with the

given uuid .

This allows the admin to accidentally or intentionally overwrite an existing tranche. In such a

case, access to the tranche would be lost along with the users' invested funds.

Recommendation

We recommend adding more checks when creating a tranche to prevent overwriting an

existing tranche with funds.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

This is not a vulnerability and rather a suggestion to prevent careless mistakes as the

function is only callable by contract admins. It only becomes an issue if admin carelessly

deletes the tranche with funds in it. Nevertheless this concern has been addressed in

5bc426b32a85598a8e46be79cc4c9e72e6049b6d by checking for the inexistence of a tranche

before creation.

C-02
Possible irrevocable deletion of a tranche along with

user funds in Mansa

Severity CRITICAL

Status • FIXED

File Location Line

 contract Mansa > function createTranche 56Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L56

fINDINgS REPORT 18

Location

Description

In the function withdrawExcessUSDC of the Mansa contract, excess USDC tokens are

withdrawn, which exceed the amount of tokens designated for redemption. However, if

users start redeeming their tokens before this function is called, the usdcBalance of the

tranche will decrease. At the same time, the variable redeemableUsdcAmount will remain

unchanged.

This behavior leads to an underflow in the process of calculating the excess:

require(tranche.state == TrancheState.Redeemable, "Cannot withdraw from this tranche");

uint256 excessUsdc = tranche.usdcBalance - tranche.redeemableUsdcAmount;

Suppose usdcBalance is 150 USDC, and redeemableUsdcAmount is 110 USDC; the admin

can withdraw excessUsdc equal to 40 USDC. However, if users redeem their tokens first by

calling the redeem function, the balance will drop to usdcBalance equal to 40 USDC. In

this case, the difference tranche.usdcBalance - tranche.redeemableUsdcAmount will

cause a revert, and the admin will be unable to withdraw the excess from the contract.

Recommendation

We recommend rethinking the process of transitioning the tranche state to Redeemable to

ensure the admin can withdraw excess tokens without the risk of them getting stuck in the

protocol.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

C-03
Admin loses ability to withdraw excessUsdc after user

redemptions in Mansa

Severity CRITICAL

Status • FIXED

File Location Line

 contract Mansa > function withdrawExcessUSDC 88Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L88

fINDINgS REPORT 19

2.2 MAJOR

Location

Description

In the function transitionTrancheState of the Mansa contract, the admin can change the

tranche state to any other state (except from the Redeemable state) at any stage. For

example, transitioning from the Closed state to Redeemable does not make sense because

there would be no tokens to redeem in the tranche.

Additionally, there are no checks when transitioning a tranche from any state to

Redeemable , even though this transition occurs once and is irreversible.

For instance, the tranche balance tranche.usdcBalance might be zero, or if no funds were

added to the tranche during its operation, tranche.token.totalSupply() would also be

zero. In these cases, transitioning the tranche to the Redeemable state is premature or

meaningless.

This leads to the possibility of transitioning the tranche state from Withdrawable to

Redeemable before tokens are deposited into the contract via the repay function. In this

scenario, users would not be able to redeem their investments because the tranche state

cannot be changed back from Redeemable , and the repay function only works in the

Withdrawable state.

M-01
Insufficient state transition checks for tranches in

Mansa

Severity MA JOR

Status • FIXED

File Location Line

 contract Mansa > function transitionTrancheState 118Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L118

fINDINgS REPORT 20

Recommendation

We recommend adding checks before transitioning the tranche state to Redeemable to

avoid situations where users lose the ability to redeem their funds. Additionally, consider

implementing a stricter pipeline for transitioning the tranche from one state to another.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

This is not a vulnerability but rather a suggestion to prevent a careless admin that does not

check the contract state before calling the state transition. Anyhow the suggestion is

adopted in 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

fINDINgS REPORT 21

Location

Description

In the function createTranche of the Mansa contract, the custodianAddress_ for a new

tranche is set without any validation. Additionally, the custodian address in the created

tranche cannot be changed.

This can result in an invalid custodian address being provided. For example, a null address

might be passed.

Subsequently, after the tranche state is transitioned to Withdrawable , user funds will be

transferred to the incorrect address and lost.

Recommendation

We recommend adding validation for the custodian address to avoid loss of funds.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

This is not a vulnerability but rather a suggestion to prevent a careless admin from typing in

0 as custodian address in tranche creation. Anyhow the suggestion is adopted in

5bc426b32a85598a8e46be79cc4c9e72e6049b6d

M-02 Missing validation for custodianAddress_ in Mansa

Severity MA JOR

Status • FIXED

File Location Line

 contract Mansa > function createTranche 61Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L61

fINDINgS REPORT 22

2.3 WARNINg

Location

Description

In the function createTranche of the Mansa contract, redeemRatioBip_ is set for a new

tranche without any validation. Additionally, the ratio in the created tranche cannot be

changed.

This can result in an invalid ratio being provided. For example, a ratio of less than 10000

(less than 100%) means that users will "gift" part of their invested funds to the protocol

instead of receiving income:

uint256 maxRedeemableUsdcAmount = tranche.redeemableTokenSupply * tranche.redeemRatioBip /

10000;

Recommendation

We recommend adding validation for the redeemRatioBip_ value when creating a tranche

to eliminate the possibility of setting undesirable values.

Update

Mansa's response:

This is not a vulnerability but rather a suggestion to prevent a careless admin from "fat-

fingering" in a wrong ratio. The "description" of a ratio less than 10000 being "invalid" is not

always in theory correct: Japan has had negative interest rate for 17 years. So this

suggestion is not actually valid.

W-01 Missing validation for redeemRatioBip_ in Mansa

Severity WARNING

Status • NO ISSUE

File Location Line

 contract Mansa > function createTranche 63Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L63

fINDINgS REPORT 23

Oxorio's response:

Considering the extreme case where the interest rate is zero, users would not receive their

invested funds back at all. In our view, this significantly undermines the purpose of the

protocol. If such a scenario is indeed valid for the protocol, we agree with the NO ISSUE

status but suggest explicitly mentioning this behavior in future documentation to avoid

misleading users.

Mansa's response:

Since the ratio is not mutable after the tranche creation, user will be able to see an

undesirable yield from the GUI or even in smart contract level. Thus the worst case for this

issue is just bad optics and the admin wasting gas to delete the undesired tranche.

LP tokens being useful for purposes other than just receiving yield is quite common in DeFi,

even the "extreme" case of 0 can theoretically be justified if the LP token can be used to get

other perks in other protocol or participate in governance or airdrop.

fINDINgS REPORT 24

Location

Description

In the function redeem of the Mansa contract, rounding occurs when dividing the value of

usdcAmount . Therefore, the tranche's usdcBalance decreases by a smaller amount than

required. At the same time, the number of MansaTrancheToken tokens for redemption

_tokenAmount is fully burned:

uint256 usdcAmount = tranche.redeemableUsdcAmount * _tokenAmount /

tranche.redeemableTokenSupply;

tranche.usdcBalance -= usdcAmount;

tranche.token.adminBurnFrom(_msgSender(), _tokenAmount);

usdc.transfer(_msgSender(), usdcAmount);

This leads to a situation where, after burning all MansaTrancheToken tokens for

redemption, a small amount of USDC remains in the tranche's balance, preventing the

tranche from being deleted as a revert will occur when the function deleteTranche is

called:

require(tranche.usdcBalance == 0, "Cannot delete tranche with non-zero USDC balance");

Recommendation

We recommend reconsidering the tranche deletion logic so that the remaining USDC

balance in the tranche does not prevent its deletion, or that the deletion process does not

rely on the tranche balance. Additionally, we recommend considering the possibility of

deducting the remaining USDC from the tranche balance upon deletion.

W-02
"Dust" on balance after redemption blocks tranche

deletion in Mansa

Severity WARNING

Status • FIXED

File Location Line

 contract Mansa > function redeem 141Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L141

fINDINgS REPORT 25

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

This is a good suggestion and we have adopted it in

5bc426b32a85598a8e46be79cc4c9e72e6049b6d to guard against people who waste their LP

tokens so that we cannot remove a tranche from the UI. It does not seem like a very

meaningful "attack" but nevertheless a valid annoyance that can be brought about by an

attacker. Even though a simple UI change would defeat this, it would still bring about some

annoyance to the team.

fINDINgS REPORT 26

Location

Description

In the function redeem of the Mansa contract, for small values of _tokenAmount , the result

of calculating usdcAmount will be 0 :

uint256 usdcAmount = tranche.redeemableUsdcAmount * _tokenAmount /

tranche.redeemableTokenSupply;

For example, with the following values, we get a usdcAmount of zero:

redeemableUsdcAmount = 110 * 10^6

redeemableTokenSupply = 100 * 10^18

_tokenAmount = 1 * 10^11

This leads to a meaningless redemption of 0 USDC tokens for a small _tokenAmount .

It also allows for spamming the frontend with events about token transfers and burns,

which are emitted when the redeem function is called. In such a case, with a redemption

_tokenAmount of 0 , the user will only pay for the gas.

Recommendation

We recommend considering refactoring the redemption logic to avoid zero token transfers.

Update

Fixed in commit 4005d0db4024befd8ad9994ae05f4721367f92ae

W-03 Possible redemption of zero USDC in Mansa

Severity WARNING

Status • FIXED

File Location Line

 contract Mansa > function redeem 141Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L141

fINDINgS REPORT 27

Mansa's response:

This is a valid suggestion to prevent people from burning gas to create meaningless

transaction rows in the UI. Even though it would be a simple change from our UI to filter out

all those, it is an annoyance nonetheless. We have adopted this suggestion in

4005d0db4024befd8ad9994ae05f4721367f92ae

fINDINgS REPORT 28

Location

Description

In the function remove of the Whitelist contract, the admin can remove a user from the

whitelist, thereby prohibiting them from transferring tokens, investing, and redeeming in the

protocol. However, the admin does not have access to the user's tokens.

If the user has already invested in a tranche, removing them from the whitelist results in

freezing their tokens. The admin also cannot access these tokens. Therefore, if the user

turns out to be malicious, their invested funds will be stuck in the protocol.

Recommendation

We recommend considering ways to handle the funds of users who have invested in the

protocol but were removed from the whitelist.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

This is a valid suggestion to cover the scenario where if we never want to re-whitelist the

address forever. We have changed deleteTranche such that the residual funds will be

transferred to the admin as a safety measure in

5bc426b32a85598a8e46be79cc4c9e72e6049b6d to get back the USDC of the frozen users.

W-04
Funds of a removed user from the whitelist are locked

in the contract in Whitelist

Severity WARNING

Status • FIXED

File Location Line

 contract Whitelist > function remove 18Whitelist.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Whitelist.sol#L18

fINDINgS REPORT 29

2.4 INfO

Location

Description

In the function repay of the Mansa contract, any user can deposit funds into the contract,

which will subsequently be distributed among users.

This function enables a malicious user to inject "dirty" cryptocurrency into the protocol and

distribute it among both their own and other participants. Consequently, they "clean" a

portion of funds obtained through dubious means by blending in with the crowd of protocol

users.

This situation can lead to the protocol itself being banned if suspicions arise of its use for

money laundering.

Recommendation

We recommend considering the possibility of restricting the set of users who have the

ability to call the repay function.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

Even though whitelisting the LP Tokens is already much stricter than rest of the DeFi

ecosystems in terms of preventing "dirty" coins,

I-01
Absence of whitelist allows injection and distribution of

"dirty" cryptocurrency in Mansa

Severity INFO

Status • FIXED

File Location Line

 contract Mansa > function repay 130Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L130

fINDINgS REPORT 30

5bc426b32a85598a8e46be79cc4c9e72e6049b6d has incorporated this suggestion to err on

the side of over paranoia.

fINDINgS REPORT 31

Location

Description

In the invest function of the Mansa contract, the calculation of the MansaTrancheToken

token amount with decimal=18 is based on the number of USDC tokens with decimal=6 .

However, external calls are made to obtain the decimals values, and the calculation of their

difference occurs each time the invest function is called:

uint256 tokenAmount = usdcAmount_ * 10 ** (tranche.token.decimals() - usdc.decimals());

Recommendation

We recommend calculating the multiplier

10 ** (tranche.token.decimals() - usdc.decimals()) once in advance and using it as

a constant in the function for gas optimization and codebase cleanliness.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

This is a small but valid suggestion as it does save about $0.15 in gas per transaction if on

mainnet as of writing. We have adopted this suggestion in

5bc426b32a85598a8e46be79cc4c9e72e6049b6d

I-02
Calculation of the difference in decimals can be moved

to a constant in Mansa

Severity INFO

Status • FIXED

File Location Line

 contract Mansa > function invest 101Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L101

fINDINgS REPORT 32

Location

Description

In the function transitionTrancheState of contract Mansa literal value with unexplained

meaning are used to perform calculations.

Recommendation

We recommend defining a constant for every magic number, giving it a clear and self-

explanatory name.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

Supposedly this refers to tranche.redeemRatioBip / 10000 . The fact that a "bip" is 1 /

10000 should be a common sense that it's not considered "magic number", and this number

is really only used once throughout the whole contract, making the point more moot. It's like

calling "100" for a percentage value a "magic number".

I-03 Magic number in Mansa

Severity INFO

Status • NO ISSUE

File Location Line

 contract Mansa > function transitionTrancheState 111Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L111

fINDINgS REPORT 33

Location

Description

In Mansa.sol#L23 , the state Invalid for the tranche is not used in the protocol. The

default state used is Closed .

Recommendation

We recommend considering removing the Invalid state from the set of possible tranche

states, or adding logic for its use.

Update

Fixed in commit 5bc426b32a85598a8e46be79cc4c9e72e6049b6d

Mansa's response:

Invalid is a proxy for 0 in the enum. This is a valid suggestion and we have adopted it in

5bc426b32a85598a8e46be79cc4c9e72e6049b6d to actually utilize it.

I-04 State Invalid is not used in Mansa.sol

Severity INFO

Status • FIXED

File Location Line

 - 23Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L23

fINDINgS REPORT 34

Description

All contracts across the codebase use the following pragma statement:

pragma solidity ^0.8.0;

Contracts should be deployed with the same compiler version and flags that they have been

tested with thoroughly. Locking the pragma helps to ensure that contracts do not

accidentally get deployed using, for example, either an outdated compiler version that

might introduce bugs that affect the contract system negatively or a pragma version too

new which has not been extensively tested.

Recommendation

We recommend locking the pragma to a specific version of the compiler.

Update

Fixed in commit 35f6a8c874a97ac0f885b096c82939b5ac08aa80

Mansa's response:

This is a fair suggestion and we have adopted it in

35f6a8c874a97ac0f885b096c82939b5ac08aa80

I-05 Floating pragma

Severity INFO

Status • FIXED

fINDINgS REPORT 35

Location

Description

In the contract Mansa , a UUID in the form of a string is used for identifying a tranche.

However, UUID version 4 is typically represented numerically and can fit into a uint128 :

An implementation may generate 128 bits of random data that is used to fill out the UUID

fields

Recommendation

We recommend considering the use of the uint128 type instead of the string type for the

UUID identifier of the tranche to optimize gas usage. Additionally, this would eliminate the

need for validating and maintaining the string format of the UUID.

Update

Mansa's response:

This is an interesting suggestion but we do not feel it is necessary at the moment. Even

though the variable is named "UUID" we intend for it to be any strings to keep it flexible.

I-06
Usage of string instead of uint128 for storing UUID in

Mansa

Severity INFO

Status • NO ISSUE

File Location Line

 contract Mansa 33Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L33
https://datatracker.ietf.org/doc/html/rfc9562#section-5.4

fINDINgS REPORT 36

Location

Description

In the function createTranche of contract Mansa , a duration field is set when creating a

new tranche, but it is not used anywhere thereafter.

Recommendation

We recommend considering the removal of the duration field from the tranche structure

or describing the logic for its utilization.

Update

Mansa's response:

The duration is to be read from the UI. The variable is required for investors to calculate

the APY along with redeemRatioBip . So this suggestion is not applicable for our use case.

I-07 Unused duration field in Mansa

Severity INFO

Status • NO ISSUE

File Location Line

 contract Mansa > function createTranche 57Mansa.sol

https://github.com/mansafinance/mansa-contracts/tree/d375a4ba61042687fd7264091d550605dbef655d/contracts/Mansa.sol#L57

APPENDIX

3

APPENDIX 38

3.1 DISClAIMER

At the request of client, Oxorio consents to the public release of this audit report. The

information contained in this audit report is provided "as is," without any representations or

warranties whatsoever. Oxorio disclaims any responsibility for damages that may arise from

or in relation to this audit report. Oxorio retains copyright of this report.

The audit makes no statements or warranties about the utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the platform or

its products, regulatory regime for the business model, or any other statements about the

fitness of the contracts to purpose, or their bug free status. The audit documentation is for

discussion purposes only.

APPENDIX 39

3.2 SECURITY ASSESSMENT

METhODOlOgY

Oxorio's smart contract audit methodology is designed to ensure the security, reliability, and

compliance of smart contracts throughout their development lifecycle. Our process

integrates the Smart Contract Security Verification Standard (SCSVS) with our advanced

techniques to address complex security challenges. For a detailed look at our approach,

please refer to the full version of our methodology. Here is a concise overview of our

auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 40

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 41

3.3 CODEBASE QUAlITY

ASSESSMENT REfERENCE

The tables below describe the codebase quality assessment categories and rating criteria

used in this report.

Category Description

Access Control

Evaluates the effectiveness of mechanisms controlling access to ensure only

authorized entities can execute specific actions, critical for maintaining

system integrity and preventing unauthorized use.

Arithmetic

Focuses on the correct implementation of arithmetic operations to prevent

vulnerabilities like overflows and underflows, ensuring that mathematical

operations are both logically and semantically accurate.

Complexity

Assesses code organization and function clarity to confirm that functions and

modules are organized for ease of understanding and maintenance, thereby

reducing unnecessary complexity and enhancing readability.

Data Validation

Assesses the robustness of input validation to prevent common

vulnerabilities like overflow, invalid addresses, and other malicious input

exploits.

Decentralization

Reviews the implementation of decentralized governance structures to

mitigate insider threats and ensure effective risk management during

contract upgrades.

Documentation

Reviews the comprehensiveness and clarity of code documentation to

ensure that it provides adequate guidance for understanding, maintaining,

and securely operating the codebase.

External

Dependencies

Evaluates the extent to which the codebase depends on external protocols,

oracles, or services. It identifies risks posed by these dependencies, such as

compromised data integrity, cascading failures, or reliance on centralized

entities. The assessment checks if these external integrations have

appropriate fallback mechanisms or redundancy to mitigate risks and protect

the protocol’s functionality.

Error Handling
Reviews the methods used to handle exceptions and errors, ensuring that

failures are managed gracefully and securely.

Logging and

Monitoring

Evaluates the use of event auditing and logging to ensure effective tracking of

critical system interactions and detect potential anomalies.

Low-Level Calls

Reviews the use of low-level constructs like inline assembly, raw call or

delegatecall , ensuring they are justified, carefully implemented, and do

not compromise contract security.

APPENDIX 42

3.3.1 Rating Criteria

Category Description

Testing and

Verification

Reviews the implementation of unit tests and integration tests to verify that

codebase has comprehensive test coverage and reliable mechanisms to

catch potential issues.

Rating Description

Excellent The system is flawless and surpasses standard industry best practices.

Good
Only minor issues were detected; overall, the system adheres to established best

practices.

Fair Issues were identified that could potentially compromise system integrity.

Poor Numerous issues were identified that compromise system integrity.

Absent A critical component is absent, severely compromising system safety.

Not

Applicable
This category does not apply to the current evaluation.

APPENDIX 43

3.4 fINDINgS ClASSIfICATION

REfERENCE

3.4.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

3.4.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MA JOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct functioning

or making it vulnerable to Denial of Service (DDoS) attacks. These problems may

result in the unintended triggering of conditions, edge cases, or interactions that

could degrade the user experience or impede specific operations. While they do not

pose immediate critical risks, they could impact contract reliability and require

attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 44

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding. Recommended fixes for this finding

are planned to be made. This finding does not affect the overall security of the

project.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 45

3.5 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

ThANK YOU fOR ChOOSINg

	Mansa Smart Contracts Security Audit Report
	Audit Overview
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Codebase Quality Assessment
	Summary of findings
	Conclusion

	Findings Report
	CRITICAL
	C-01 Comparison of two variables with different decimals in Mansa
	Location
	Description
	Recommendation
	Update

	C-02 Possible irrevocable deletion of a tranche along with user funds in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	C-03 Admin loses ability to withdraw excessUsdc after user redemptions in Mansa
	Location
	Description
	Recommendation
	Update

	MAJOR
	M-01 Insufficient state transition checks for tranches in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	M-02 Missing validation for custodianAddress_ in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	WARNING
	W-01 Missing validation for redeemRatioBip_ in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:
	Oxorio's response:
	Mansa's response:

	W-02 "Dust" on balance after redemption blocks tranche deletion in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	W-03 Possible redemption of zero USDC in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	W-04 Funds of a removed user from the whitelist are locked in the contract in Whitelist
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	INFO
	I-01 Absence of whitelist allows injection and distribution of "dirty" cryptocurrency in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	I-02 Calculation of the difference in decimals can be moved to a constant in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	I-03 Magic number in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	I-04 State Invalid is not used in Mansa.sol
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	I-05 Floating pragma
	Description
	Recommendation
	Update
	Mansa's response:

	I-06 Usage of string instead of uint128 for storing UUID in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	I-07 Unused duration field in Mansa
	Location
	Description
	Recommendation
	Update
	Mansa's response:

	Appendix
	Disclaimer
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

