
MAY 10, 2023

LIDO V2. ON-

CHAIN AUDIT

REPORT

2

CONTENTs

1. INTRO .. 5

1.1. DISCLAIMER .. 6

1.2. ABOUT OXORIO ... 7

1.3. SECURITY ASSESSMENT METHODOLOGY ... 8

1.4. FINDINGS CLASSIFICATION .. 9

1.4.1 Severity Level Reference ... 9

1.4.2 Status Level Reference .. 9

1.5. PROJECT OVERVIEW ... 10

1.6. AUDIT SCOPE ... 11

2. FINDINGS REPORT ... 13

2.1. CRITICAL ... 14

2.2. MAJOR ... 15

2.2.1 Missing validation for _withdrawalCredentials in StakingRouter 15

2.2.2 Missing _publicKeys and _signatures validation in NodeOperatorsRegistry 16

2.2.3 There is no check for equal constructor variables in DepositSecurityModule 17

2.2.4 checkAccountingOracleReport may revert in case of skipped frames in

OracleReportSanityChecker .. 17

2.2.5 Missing validation in StakingRouter ... 18

2.2.6 Lack of validation of _stakingModuleAddress in StakingRouter 19

2.2.7 REQUEST_BURN_SHARES_ROLE can withdraw stETH for burning at any time in Burner

... 20

2.3. WARNING ... 22

2.3.1 Possibility of overflow in Burner .. 22

2.3.2 Allowance cannot be reset in Lido ... 22

2.3.3 Interface support in LidoLocator ... 23

2.3.4 All balance is used for rewards in LidoExecutionLayerRewardsVault 24

3

2.3.5 All balance is used for withdrawals in WithdrawalVault .. 24

2.3.6 Missing validations in unsafeChangeDepositedValidators in Lido 25

2.3.7 Members of the deposit committee can collude with node operators in

DepositSecurityModule .. 27

2.3.8 Missing sanity check that _stETH is a stETH contract in Burner 28

2.3.9 Missing validation for duplication of staking module names in StakingRouter 28

2.3.10 Missing logic for updating staking module name in StakingRouter 29

2.3.11 Missing validation for treasuryFee and stakingModuleFee in StakingRouter 30

2.3.12 Missing error handling logic when calling stakingModule in StakingRouter 30

2.3.13 Try catch can revert in StakingRouter .. 31

2.3.14 Underflow validation in Packed64x4 .. 32

2.3.15 Total targetShare can be higher than 100% in StakingRouter 33

2.3.16 Missing remove module logic in StakingRouter .. 34

2.3.17 Number of staking modules cannot be changed in StakingRouter 34

2.4. INFO .. 36

2.4.1 MANAGE_NODE_OPERATOR_ROLE is overpowered in NodeOperatorsRegistry 36

2.4.2 Guardians are not stored in sorted array in DepositSecurityModule 36

2.4.3 require should be removed in Burner ... 37

2.4.4 key can be updated with the same value in OracleDaemonConfig 38

2.4.5 Int type initialization to zero is redundant .. 38

2.4.6 STAKING_MODULE_INDICES_MAPPING logic is redundant in StakingRouter 39

2.4.7 Unclear use of the moduleAddr variable in StakingRouter .. 40

2.4.8 Typos in contracts .. 40

2.4.9 Out-of-gas validation in StakingRouter .. 42

2.4.10 No logic for manual reward distribution in StakingRouter ... 42

2.4.11 Missing on-chain validation in the function requestWithdrawals in WithdrawalQueue

during the bunker mode ... 43

2.4.12 Frontrun deposit_root for pausing deposits in DepositSecurityModule 44

2.4.13 Mass slashing of non-Lido validators increases the potential damage from malicious

behavior of Lido node operators ... 45

4

2.4.14 Large deposits and withdrawals during the limiter-capped rebases in

OracleReportSanityChecker .. 46

2.4.15 "Memory Array Creation Overflow" compiler bug ... 48

2.4.16 ECDSA signature malleability in the OpenZeppelin library in EIP712StETH 49

2.4.17 Explicit cast to address in StakingRouter .. 50

2.4.18 UINT64_MAX explicitly declared in NodeOperatorsRegistry 50

2.4.19 Link does not exist in StETH .. 51

3. AUDITED INCIDENTS REPORT ... 52

3.1. AUDITED INCIDENTS REPORT .. 53

3.1.1 DSM can initiate a deposit between ref_slot and the oracle report execution block 53

3.1.2 StETH/ETH stability during bunker mode ... 53

3.1.3 getStakingRewardsDistribution returns empty values for stopped modules in

StakingRouter .. 54

3.1.4 Length of _depositCalldata does not equal amount of deposits in StakingRouter 55

3.1.5 False-positive stop accepting deposits in DepositSecurityModule 55

3.1.6 Oracle accounting report flow over skipped frames ... 56

3.1.7 Consequences of reverts in OracleReportSanityChecker ... 57

3.1.8 Malicious DAO proposal ... 58

4. CONCLUSION .. 60

INTRO

1

INTRO 6

1.1 DIsCLAIMER

The audit makes no statements or warranties about the utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the platform or

its products, regulatory regime for the business model, or any other statements about the

fitness of the contracts to purpose, or their bug free status. The audit documentation is for

discussion purposes only.

INTRO 7

1.2 AbOUT OxORIO

Oxorio is a young but rapidly growing audit and consulting company in the field of the

blockchain industry, providing consulting and security audits for organizations from all over

the world. Oxorio has participated in multiple blockchain projects during which smart

contract systems were designed and deployed by the company.

Oxorio is the creator, maintainer, and major contributor of several blockchain projects and

employs more than 5 blockchain specialists to analyze and develop smart contracts.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

INTRO 8

1.3 sECURITY AssEssMENT

METHODOLOgY

A group of auditors is involved in the work on this audit. Each of them checks the provided

source code independently of each other in accordance with the security assessment

methodology described below:

1. Project architecture review

Study the source code manually to find errors and bugs.

2. Check the code for known vulnerabilities from the list

Conduct a verification process of the code against the constantly updated list of already

known vulnerabilities maintained by the company.

3. Architecture and structure check of the security model

Study the project documentation and its comparison against the code including the study of

the comments and other technical papers.

4. Result’s cross-check by different auditors

Normally the research of the project is done by more than two auditors. This is followed by

a step of mutual cross-check process of the audit results between different task performers.

5. Report consolidation

Consolidation of the audited report from multiple auditors.

6. Reaudit of new editions

After the provided review and fixes from the client, the found issues are being double-

checked. The results are provided in the new version of the audit.

7. Final audit report publication

The final audit version is provided to the client and also published on the official website of

the company.

INTRO 9

1.4 FINDINgs CLAssIFICATION

1.4.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

CRITICAL: A bug leading to assets theft, locked fund access, or any other loss of funds

due to transfer to unauthorized parties.

MAJOR: A bug that can trigger a contract failure. Further recovery is possible only by

manual modification of the contract state or replacement.

WARNING: A bug that can break the intended contract logic or expose it to DDoS

attacks.

INFO: Minor issue or recommendation reported to / acknowledged by the client's team.

1.4.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

NEW: Waiting for the project team's feedback.

FIXED: Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED: The project team is aware of this finding. Recommended fixes for this

finding are planned to be made. This finding does not affect the overall security of the

project.

NO ISSUE: Finding does not affect the overall security of the project and does not violate

the logic of its work.

DISMISSED: The issue or recommendation was dismissed by the client.

INTRO 10

1.5 PROjECT OVERVIEw

Lido is a liquid staking solution for ETH backed by industry-leading staking providers. Lido

lets users stake their ETH - without locking tokens or maintaining infrastructure - whilst

participating in on-chain activities, e.g. lending.

Lido attempts to solve the problems associated with initial ETH staking - illiquidity,

immovability and accessibility - making staked ETH liquid and allowing for participation with

any amount of ETH to improve performance of the Ethereum network.

INTRO 11

1.6 AUDIT sCOPE

contracts/0.4.24/lib/Packed64x4.sol

contracts/0.4.24/lib/SigningKeys.sol

contracts/0.4.24/lib/StakeLimitUtils.sol

contracts/0.4.24/nos/NodeOperatorsRegistry.sol

contracts/0.4.24/oracle/LegacyOracle.sol

contracts/0.4.24/utils/Pausable.sol

contracts/0.4.24/utils/Versioned.sol

contracts/0.4.24/Lido.sol

contracts/0.4.24/StETH.sol

contracts/0.4.24/StETHPermit.sol

contracts/0.6.11/deposit_contract.sol

contracts/0.6.12/interfaces/IStETH.sol

contracts/0.6.12/WstETH.sol

contracts/0.8.9/interfaces/IStakingModule.sol

contracts/0.8.9/lib/Math.sol

contracts/0.8.9/lib/PositiveTokenRebaseLimiter.sol

contracts/0.8.9/lib/UnstructuredStorage.sol

contracts/0.8.9/lib/UnstructuredRefStorage.sol

contracts/0.8.9/oracle/AccountingOracle.sol

contracts/0.8.9/oracle/BaseOracle.sol

contracts/0.8.9/oracle/HashConsensus.sol

contracts/0.8.9/oracle/ValidatorsExitBusOracle.sol

contracts/0.8.9/proxy/OssifiableProxy.sol

contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol

contracts/0.8.9/utils/access/AccessControl.sol

contracts/0.8.9/utils/access/AccessControlEnumerable.sol

contracts/0.8.9/utils/PausableUntil.sol

contracts/0.8.9/utils/Versioned.sol

contracts/0.8.9/BeaconChainDepositor.sol

contracts/0.8.9/Burner.sol

contracts/0.8.9/DepositSecurityModule.sol

contracts/0.8.9/EIP712StETH.sol

contracts/0.8.9/LidoExecutionLayerRewardsVault.sol

contracts/0.8.9/LidoLocator.sol

contracts/0.8.9/OracleDaemonConfig.sol

contracts/0.8.9/StakingRouter.sol

contracts/0.8.9/WithdrawalQueueERC721.sol

contracts/0.8.9/WithdrawalQueue.sol

contracts/0.8.9/WithdrawalQueueBase.sol

contracts/0.8.9/WithdrawalVault.sol

contracts/common/interfaces/IEIP712StETH.sol

contracts/common/interfaces/ILidoLocator.sol

https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/lib/Packed64x4.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/lib/SigningKeys.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/lib/StakeLimitUtils.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/nos/NodeOperatorsRegistry.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/oracle/LegacyOracle.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/utils/Pausable.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/utils/Versioned.sol
https://github.com/lidofinance/lido-dao/blob/feature/shapella-upgrade/contracts/0.4.24/Lido.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/StETH.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.4.24/StETHPermit.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.6.11/deposit_contract.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.6.12/interfaces/IStETH.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.6.12/WstETH.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/interfaces/IStakingModule.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/lib/Math.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/lib/PositiveTokenRebaseLimiter.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/lib/UnstructuredStorage.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/lib/UnstructuredRefStorage.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/oracle/AccountingOracle.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/oracle/BaseOracle.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/oracle/HashConsensus.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/oracle/ValidatorsExitBusOracle.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/proxy/OssifiableProxy.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/utils/access/AccessControl.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/utils/access/AccessControlEnumerable.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/utils/PausableUntil.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/utils/Versioned.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/BeaconChainDepositor.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/Burner.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/DepositSecurityModule.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/EIP712StETH.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/LidoExecutionLayerRewardsVault.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/LidoLocator.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/0.8.9/OracleDaemonConfig.sol
https://github.com/lidofinance/lido-dao/blob/feature/shapella-upgrade/contracts/0.8.9/StakingRouter.sol
https://github.com/lidofinance/lido-dao/blob/feature/shapella-upgrade/contracts/0.8.9/WithdrawalQueueERC721.sol
https://github.com/lidofinance/lido-dao/blob/feature/shapella-upgrade/contracts/0.8.9/WithdrawalQueue.sol
https://github.com/lidofinance/lido-dao/blob/feature/shapella-upgrade/contracts/0.8.9/WithdrawalQueueBase.sol
https://github.com/lidofinance/lido-dao/blob/feature/shapella-upgrade/contracts/0.8.9/WithdrawalVault.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/common/interfaces/IEIP712StETH.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/common/interfaces/ILidoLocator.sol

INTRO 12

contracts/common/interfaces/IBurner.sol

contracts/common/lib/ECDSA.sol

contracts/common/lib/Math256.sol

contracts/common/lib/MemUtils.sol

contracts/common/lib/MinFirstAllocationStrategy.sol

contracts/common/SignatureUtils.sol

The final commits to audit are:

2023-02-21: [e57517730c3e11a41e9cbc32ce018726722335b7] initial commit (Lido 2.0

beta2)

2023-03-14: [2bce10d4f0cb10cde11bead4719a5bcde76b93f9] updated Lido 2.0 beta3

2023-03-23: [ac06171909b752124069671e9676507c1f733a72] updated Lido 2.0 rc0-

hotfix release

2023-04-04: [feafec437669a131a9e3c33ca680618d490c4fef] updated Lido 2.0 rc1

release

2023-04-13: [e45c4d6fb8120fd29426b8d969c19d8a798ca974] updated Lido 2.0 rc2

release

https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/common/interfaces/IBurner.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/common/lib/ECDSA.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/common/lib/Math256.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/common/lib/MemUtils.sol
https://github.com/lidofinance/lido-dao/tree/feature/shapella-upgrade/contracts/common/lib/MinFirstAllocationStrategy.sol
https://github.com/lidofinance/lido-dao/blob/feature/shapella-upgrade/contracts/common/lib/SignatureUtils.sol
https://github.com/lidofinance/lido-dao/tree/e57517730c3e11a41e9cbc32ce018726722335b7/contracts
https://github.com/lidofinance/lido-dao/tree/e57517730c3e11a41e9cbc32ce018726722335b7/contracts
https://github.com/lidofinance/lido-dao/releases/tag/v2.0.0-beta.2
https://github.com/lidofinance/lido-dao/releases/tag/v2.0.0-beta.2
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9
https://github.com/lidofinance/lido-dao/releases/tag/v2.0.0-beta.3
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72
https://github.com/lidofinance/lido-dao/releases/tag/v2.0.0-rc.0-hotfix
https://github.com/lidofinance/lido-dao/releases/tag/v2.0.0-rc.0-hotfix
https://github.com/lidofinance/lido-dao/tree/feafec437669a131a9e3c33ca680618d490c4fef
https://github.com/lidofinance/lido-dao/tree/feafec437669a131a9e3c33ca680618d490c4fef
https://github.com/lidofinance/lido-dao/tree/v2.0.0-rc.1
https://github.com/lidofinance/lido-dao/tree/v2.0.0-rc.1
https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974
https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974
https://github.com/lidofinance/lido-dao/releases/tag/v2.0.0-rc.2
https://github.com/lidofinance/lido-dao/releases/tag/v2.0.0-rc.2

FINDINgs

REPORT2

FINDINgs REPORT 14

2.1 CRITICAL

No issues found

FINDINgs REPORT 15

2.2 MAjOR

2.2.1 Missing validation for _withdrawalCredentials in

StakingRouter

Description

In the functions initialize and setWithdrawalCredentials in the StakingRouter

contract there is no validation for the variable _withdrawalCredentials .

So, if the _withdrawalCredentials variable is passed as an empty value, it will not be

possible to call the deposit function.

Recommendation

We recommend adding validation that _withdrawalCredentials is not empty and is of

0x01-type credentials (which support withdrawals).

Update

LIDO's response

For the purpose of Lido V2 upgrade, a dedicated template contract that contains all

necessary variables was developed to perform all necessary operations - such as creation,

initialization, and configuration in an atomic way. In particular, for the initialize method

in StakingRouter , the constant _withdrawalCredentials is preconfigured and does not

change after the template is deployed.

The setWithdrawalCredentials method still can be used later on behalf of the Lido DAO

Agent contract that has a granted role (which is a part of the whole protocol ACL setup).

Therefore, the change requires an on-chain Aragon vote to enact and the Lido governance

token holders accept associated risks of changing _withdrawalCredentials if support the

vote.

Oxorio's response

There is still a possibility of issues with data in the set up script as it happened with crvUSD.

SEVERITY MAJOR

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L137
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L137
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L1133
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L1133
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L1092
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L1092
https://notes.ethereum.org/@launchpad/withdrawals-faq#Q-What-are-0x00-and-0x01-withdrawal-credentials-prefixes
https://etherscan.io/address/0x3e40D73EB977Dc6a537aF587D48316feE66E9C8c
https://etherscan.io/address/0x3e40D73EB977Dc6a537aF587D48316feE66E9C8c
https://etherscan.io/address/0x3e40D73EB977Dc6a537aF587D48316feE66E9C8c
https://etherscan.io/address/0x3e40D73EB977Dc6a537aF587D48316feE66E9C8c
https://twitter.com/CurveFinance/status/1654060295835246592

FINDINgs REPORT 16

2.2.2 Missing _publicKeys and _signatures validation

in NodeOperatorsRegistry

Description

In the function addSigningKeys in the NodeOperatorsRegistry contract the node

operator adds the new validator's public key with a signature. This function checks the

length of the _publicKeys and _signatures arrays and that public key is not empty. But it

does not check the validity of public key and signature. So if by any chance the operator

sends an incorrect public key or signature with the right length, the data will be stored in the

contract storage without any error.

In the deposit function of StakingRouter contract the deposit committee deposits

buffered ETH to this module. It calls the obtainDepositData function of

NodeOperatorsRegistry contract to receive public keys and signatures. After that it calls

the deposit function of BeaconChain DepositContract contract with these public keys

and signatures. If a public key or signature are incorrect but do have the right length, the

DepositContract will still receive and store it without an error. The deposited funds are

lost in this case, because they were deposited to the incorrect public key.

Recommendation

We recommend implementing additional validation for _publicKeys and _signatures on

the deposit committee side. If the deposit committee detects some incorrect keys or

signatures it must remove it from the module storage.

Update

LIDO's response

All keys used for the deposits pass an extensive set of the offchain checks to be used for

deposits. Adding such a check into the on-chain code will considerably increase the gas

costs still not allowing completely getting rid of the off-chain checks due to unavailability

Consensus Layer state on Execution Layer.

SEVERITY MAJOR

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L978
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L978
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L1084
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L1084
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L737
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L737
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.6.11/deposit_contract.sol#L101
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.6.11/deposit_contract.sol#L101

FINDINgs REPORT 17

2.2.3 There is no check for equal constructor variables in

DepositSecurityModule

Description

In the constructor in the DepositSecurityModule contract the variables _lido ,

_depositContract and _stakingRouter are validated for zero value, but these addresses

are not validated that they are not equal to each other and there is no sanity checks that

these addresses actually support interfaces. If the addresses are set incorrectly, they cannot

be changed since they are immutable and the DepositSecurityModule contract must be

redeployed.

Recommendation

We recommend adding validation for interface support with ERC165Checker and check that

addresses are not the same.

Update

LIDO's response

The Lido governance token holders accept associated risks to verify the input for the _lido ,

_depositContract and _stakingRouter addresses correctness upon the Lido V2 upgrade

(or the new DepositSecurityModule instance activation) if support the vote.

2.2.4 checkAccountingOracleReport may revert in case

of skipped frames in OracleReportSanityChecker

SEVERITY MAJOR

STATUS ACKNOWLEDGED

SEVERITY MAJOR

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/DepositSecurityModule.sol#L93-L95
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/DepositSecurityModule.sol#L93-L95

FINDINgs REPORT 18

Description

In the functions _checkOneOffCLBalanceDecrease and _checkSimulatedShareRate in

OracleReportSanityChecker the revert condition verifies the variables

oneOffCLBalanceDecreaseBP and simulatedShareDeviation in terms of a single rebase

report. Several skipped frames can produce the accumulated balance decrease and the

share rate deviation that will not pass the checks, while it will not trigger the revert in case

when frames were not skipped and balance changes were not accumulated.

Recommendation

We recommend to clarify the workflow of the oneOffCLBalanceDecreaseBPLimit and

simulatedShareRateDeviationBPLimit parameters for the case of several skipped frames

and consider the time passed when checking the change against the limits. The revert of the

report due to the mentioned limits will require manual adjustment of the limits in order to

let the report pass the check.

Update

LIDO's response

The risk is acknowledged and mitigated by the Lido DAO intervention vote that changes the

limits if several skipped oracle frames lead to limits violation. Moreover, the

OracleReportSanityChecked contracts enables the limits tuning by assigning the

restrictive roles subset to a dedicated DAO committee if it had been gathered for this

purpose.

2.2.5 Missing validation in StakingRouter

Description

In the function initialize in the StakingRouter contract there is no validation that

_lido and _admin are the same address. If the same one is installed, it can lead to a

complete block of the contract.

In the constructor in the Burner contract, there is no validation that admin , treasury

and _stETH are the same address. If the same one is installed, it can lead to a complete

SEVERITY MAJOR

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L562
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L562
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L632
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L632
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L142
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L142
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/Burner.sol#L133
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/Burner.sol#L133

FINDINgs REPORT 19

block of the contract because treasury and _stETH are immutable and cannot be

updated.

Recommendation

We recommend adding validation that the _lido and _admin addresses are different in

StakingRouter and adding validation that the admin , treasury and _stETH addresses

are different in Burner .

Update

LIDO's response

The Lido governance token holders accept associated risks to verify the input for the both

_lido and _admin addresses of StakingRouter contract and _admin , _treasury , _stETH

addresses of Burner contract correctness upon the Lido V2 upgrade if support the vote.

2.2.6 Lack of validation of _stakingModuleAddress in

StakingRouter

Description

In the function addStakingModule in the StakingRouter contract there is no validation

that the _stakingModuleAddress is a contract and supports the IStakingModule

interface. If the module _stakingModuleAddress is set as address, the staking module will

be unusable. For example the deposit function will revert because of the missing interface,

or if the _stakingModuleAddress is a contract, but is missing the

onWithdrawalCredentialsChanged hook, the function setWithdrawalCredentials will

always revert of try block, because of the missing interface. So, if the

_stakingModuleAddress address is set incorrectly, the module will be lost forever without

the possibility of deleting it or changing the stakingModuleAddress to a new one.

Recommendation

We recommend validating the address for interface support with the ERC165Checker

contract using the supportsInterface call.

SEVERITY MAJOR

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L186
https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L186
https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1121
https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1121
https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1150
https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1150
https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165

FINDINgs REPORT 20

Update

LIDO's response

The Lido governance token holders accept associated risks to verify the input for the

_stakingModuleAddress address correctness upon the Lido V2 upgrade if support the

vote.

2.2.7 REQUEST_BURN_SHARES_ROLE can withdraw stETH

for burning at any time in Burner

Description

In the functions of Burner contract:

requestBurnShares

requestBurnSharesForCover

REQUEST_BURN_SHARES_ROLE can withdraw stETH for burning at any time from contract

WithdrawalQueue and NodeOperatorRegistry . At the same time if this role gets assigned

to a third party that is different from the verified contracts they can request burning shares

in uncontrolled way, thus affecting economic mechanisms of the protocol in a critical way.

Recommendation

We recommend limiting the set of callers of the functions requestBurnShares and

requestBurnSharesForCover to verified contracts.

Update

LIDO's response

The Lido governance token holders accept associated risks to verify the correctness of the

assignment of the REQUEST_BURN_SHARES_ROLE role upon the Lido V2 upgrade if support

the vote.

However, the finding is worth further consideration from the side of the Lido DAO

contributors. The currently chosen design relies on the stETH token approvals for the

SEVERITY MAJOR

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/Burner.sol#L215
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/Burner.sol#L182
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L287-L291
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L287-L291
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L277
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L277

FINDINgs REPORT 21

Burner contract functiioning, which might be changed in future releases taking into

account the outlined risk of the ACL misconfiguration.

FINDINgs REPORT 22

2.3 wARNINg

2.3.1 Possibility of overflow in Burner

Description

In the function commitSharesToBurn in the Burner contract the variables

totalCoverSharesBurnt and totalNonCoverSharesBurnt always get bigger. After some

time the Burner contract will become unusable since these 2 variables will extend the limits

of the uint256 type and the commitSharesToBurn function will revert with overflow.

Recommendation

We recommend adding setter functions which will reinitialize these 2 variables.

Update

LIDO's response

These variables use uint256 precision while deal with amounts comparable with ETH total

supply. The risk of overflows is unrealizable in practice. Even though, it's possible to change

the contract instance later via an on-chain vote if supported by token holders.

2.3.2 Allowance cannot be reset in Lido

Description

In the Lido contract there is no function for resetting allowance from the

WithdrawalQueue contract to the Burner contract. If all of the allowance is used, the

requests can no longer be finalized and all the system will be paused.

SEVERITY WARNING

STATUS ACKNOWLEDGED

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/Burner.sol#L307
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/Burner.sol#L307
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/Lido.sol#L289
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/Lido.sol#L289

FINDINgs REPORT 23

Recommendation

We recommend adding function for resetting allowance to the Burner contract from the

WithdrawalQueue in case when all of the allowance is used.

Update

LIDO's response

Allowance is set as max uint256 while stETH TVL is comparable with ETH total supply. The

risk of underflows is unrealizable in practice. However, it was decided to implement a

special case for infinite allowance to save gas and follow the latest ERC20 implementation in

OpenZeppelin. Commit with changes: https://github.com/lidofinance/lido-dao/commit/

e9509d77f010fec76899e25ccde785c8de47bd42. Therefore, the described finding is not

applicable for the new code version.

2.3.3 Interface support in LidoLocator

Description

In the constructor in the LidoLocator contract there are no sanity checks for addresses.

Passed parameters can be equal to each other, and, if the passed variables are missing the

correct interface, all the system might be stopped. For example, if the withdrawalQueue is

set incorrectly and is missing IWithdrawalQueue , the deposit function of the lido

contract will always revert. Since all variables are immutable , passed variables cannot be

reset.

Recommendation

We recommend checking if the addresses are not equal to each other and that the passed

contract implements the appropriate interface.

Update

LIDO's response

The risks are mitigated with an extensive set of deployment checks, tests and alerting tools.

In the worst case, the LidoLocator contract is upgradable through the on-chain Lido DAO

vote.

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/3085
https://github.com/lidofinance/lido-dao/commit/e9509d77f010fec76899e25ccde785c8de47bd42
https://github.com/lidofinance/lido-dao/commit/e9509d77f010fec76899e25ccde785c8de47bd42
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/LidoLocator.sol#L55
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/LidoLocator.sol#L55

FINDINgs REPORT 24

2.3.4 All balance is used for rewards in

LidoExecutionLayerRewardsVault

Description

In the function withdrawRewards in the LidoExecutionLayerRewardsVault contract the

balance of the contract is used as an execution layer rewards. This means that any user can

send value to the LidoExecutionLayerRewardsVault contract and this value will be used

as a reward. The problem is that value sent to the contract can be sent by mistake, or it can

be sent by the hacker of other protocol in order to mix funds and receive at least a part of

the funds in a legal way. Since the LidoExecutionLayerRewardsVault contract is missing

blacklist or return of the native ether logic, all received tokens will be used for rewards.

Recommendation

We recommend to track the source of the native tokens and adding a function that can be

called by DAO to return all the suspicious funds.

Update

LIDO's response

This is the expected behavior. As this contract is used as feeRecipient by the Lido-

participating validators which use the mev-boost middleware, it's expected that funds

(native ether) may come from different type of transactions and even without transactions

at all. The current design makes no assumptions about funds sources and balance top-up

approaches which is required for the protocol operation.

2.3.5 All balance is used for withdrawals in

WithdrawalVault

SEVERITY WARNING

STATUS ACKNOWLEDGED

SEVERITY WARNING

STATUS NO ISSUE

https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/LidoExecutionLayerRewardsVault.sol#L85
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/LidoExecutionLayerRewardsVault.sol#L85

FINDINgs REPORT 25

Description

In the function withdrawWithdrawals of the WithdrawalVault contract the balance of the

contract is used as withdrawals. This means that any user can send value to the

WithdrawalVault contract and this value will be used as a withdrawal. The problem is that

the value sent to the contract can be sent by mistake, or it can be sent by the hacker of

other protocol in order to mix funds and receive at least a part of the funds in a legal way.

Since the WithdrawalVault contract is missing blacklist or return of the native ether logic,

all received tokens will be used for rewards.

Recommendation

We recommend to track the source of the native tokens and adding a function that can be

called by DAO to return all the suspicious funds.

Update

LIDO's response

The WithdrawalVault contract has no payable receive or fallback functions to accept

ether via transactions, as it serves as the 0x01 -type withdrawal credentials corresponding

address to handle withdrawals of the Lido-participating validators. It's still possible to top-up

the contract's balance (e.g., via the selfdestrtuct call) yet without invocation of the

contract's on-chain code. Hence, tracking these funds can't be done on-chain.

2.3.6 Missing validations in

unsafeChangeDepositedValidators in Lido

Description

In the function unsafeChangeDepositedValidators in the Lido contract there is not

enough checks of the _newDepositedValidators variable and validations when the

function can be invoked or not. Even considering that the function is operated via

UNSAFE_CHANGE_DEPOSITED_VALIDATORS_ROLE which belongs to Lido DAO, the risk of using

it incorrectly is very high, the following risks are:

In the _getTransientBalance function in the Lido contract there is an assert that

validates if depositedValidators >= clValidators , but due to the lack of validation of

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalVault.sol#L80
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalVault.sol#L80
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L613
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L613
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1098
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1098

FINDINgs REPORT 26

input variable in unsafeChangeDepositedValidators function the variable in

DEPOSITED_VALIDATORS_POSITION can be changed so that the assert will be met, while

the assert should be used only for invariants, and the fail of the assert will lead to the

failed report, which is critical point for Lido. Furthermore the incorrect setting for smaller

value of the deposited validators with the unsafeChangeDepositedValidators function

will revert require in _processClStateUpdate function and lead to incorrect

accounting.

If the deposit function is executed right before the invocation of the

unsafeChangeDepositedValidators function, the unsafeChangeDepositedValidators

will overwrite the value in DEPOSITED_VALIDATORS_POSITION which was set during the

deposit function to the other one since the unsafeChangeDepositedValidators is

setting the new value instead of adding value to the existing one. This leads to incorrect

accounting of the deposited validators.

In the unsafeChangeDepositedValidators function in the Lido contract the

canDeposit modifier is missing, so the amount of the deposited validators can change

during bunker mode, or when all staking modules are stopped or paused.

After the unsafeChangeDepositedValidators function in the Lido contract the amount

of deposited validators is changed, but these validators do not associate with any of the

existing staking modules. Thus it is possible to deposit more than _maxDepositsCount of

any staking module, there is no execution of the obtainDepositData hook of the staking

module address, there is no update of the lastDepositBlock variable in DSM and of

stakingModule.lastDepositAt , stakingModule.lastDepositBlock variables in the

StakingRouter contract.

Recommendation

We recommend refactoring the unsafeChangeDepositedValidators function with more

validations for bunker mode, introducing interactions with the StakingRouter contract,

adding value to the existing amount of valitators instead of setting it.

Update

LIDO's response

The unsafeChangeDepositedValidators method calls require an on-chain Aragon vote to

enact and the Lido governance token holders accept associated risks to verify the input for

the _newDepositedValidators variable correctness if support the vote.

The method was introduced to support the onboarding of the already deposited validators

with 0x00 credentials to the Lido protocol by rotating their withdrawal credentials to the

type-0x01 ones used by Lido. It is prefixed with unsafe_ and restricted by a role with

UNSAFELY_ prefix to raise additional attention before ever being used. The Lido V2

deployment template doesn’t assign this role.

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L810
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L810
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L694
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L694
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L616
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L616
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L613
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L613
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L613
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L613

FINDINgs REPORT 27

2.3.7 Members of the deposit committee can collude with

node operators in DepositSecurityModule

Description

To mitigate the deposit front-running vulnerability, Deposit Security Committee was

established in LIP-5. The ability of collusion between the deposit committee and node

operators is considered in this LIP:

Members of the committee can collude with node operators and steal money by signing

bad data that contains malicious pre-deposits. To mitigate this we propose to allow a

single committee member to stop deposits and also enforce space deposits in time (e.g.

no more than 150 deposits with 150 blocks in between them), to provide the single

honest participant an ability to stop further deposits even if the supermajority colludes.

This design ensures the protocol's robustness even with just a single honest committee

member. The impact of majority-malicious committee is limited to 4800 ETH at most (150

keys allowed within a time window, 32 ETH deposited to every key).

The possible amount of funds under risk (4800 ETH) is a very big amount which equals 150

slashings. The closed set of Deposit Security Committee members increase the risk (in case

of no honest participant).

Recommendation

To minimize possible risk we recommend implementing additional functionality for Deposit

Security Committee:

Staking/slashing mechanism for the committee members with amount comparable to

the amount of funds at risk.

Making committee members set open for external participants willing to make a

stake. It increases the probability that there will be at least a single honest participant.

Update

LIDO's response

As it's described in docs.lido.fi, the members of the deposit committee consist of six node

operators and a Lido dev contributors subteam while we want to extend this set.

SEVERITY WARNING

STATUS ACKNOWLEDGED

1.

2.

https://github.com/lidofinance/lido-improvement-proposals/blob/172ecb836fbf2001f126afa5a2c3c78846cd3310/LIPS/lip-5.md
https://github.com/lidofinance/lido-improvement-proposals/blob/172ecb836fbf2001f126afa5a2c3c78846cd3310/LIPS/lip-5.md#deposit-security-committee
https://docs.lido.fi/guides/deposit-security-manual/#committee-membership

FINDINgs REPORT 28

The mentioned LIP-5 and its associated risks were accepted by the Lido governance token

holders (for example, the loss of 4800ETH corresponds to less than 0.1% of the current

protocol's TVL).

2.3.8 Missing sanity check that _stETH is a stETH

contract in Burner

Description

In the constructor in the Burner contract there is no sanity check that _stETH is a stETH

contract. Given that the _lido address cannot be updated, this can lead to a contract lock if

a different address than stETH is set.

Recommendation

We recommend to validate _stETH address for interface support with the ERC165Checker

contract using the supportsInterface call.

Update

LIDO's response

The Lido governance token holders accept associated risks to verify the input for the

_stETH address correctness upon the Lido V2 upgrade if support the vote.

2.3.9 Missing validation for duplication of staking module

names in StakingRouter

SEVERITY WARNING

STATUS ACKNOWLEDGED

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-improvement-proposals/blob/develop/LIPS/lip-5.md
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/Burner.sol#L136
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/Burner.sol#L136
https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165

FINDINgs REPORT 29

Description

In the function addStakingModule in the StakingRouter contract there is no validation for

duplication of the _name parameter of staking module names.

Recommendation

We recommend adding validation for duplication of staking module names.

Update

LIDO's response

The addition of a module to StakingRouter requires an on-chain Aragon vote to enact and

the Lido governance token holders accept associated risks to verify the input for the staking

module name correctness if support the vote.

2.3.10 Missing logic for updating staking module name in

StakingRouter

Description

In the function updateStakingModule there is no logic for updating the name parameter of

staking module. In case of an error in the title, it will not be possible to update it.

Recommendation

We recommend adding a logic for updating the name parameter of staking module in

StakingRouter .

Update

LIDO's response

The adding module to the StakingRouter requires an on-chain Aragon vote to enact and

the Lido governance token holders accept associated risks to verify the input for the staking

module name correctness if support the vote.

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L176
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L242

FINDINgs REPORT 30

Moreover, it's still possible to update the staking module name later on behalf of the

StakingRouter upgrade procedure since the contract is upgradable via the Lido DAO

Aragon vote.

2.3.11 Missing validation for treasuryFee and

stakingModuleFee in StakingRouter

Description

In the functions addStakingModule and updateStakingModule there is no treasuryFee and

stakingModuleFee . It is checked that the sum of stakingModuleFee and treasuryFee

does not exceed TOTAL_BASIS_POINTS , but stakingModuleFee and treasuryFee are not

validated or limited in any way. This means you can set stakingModuleFee = 0 and

treasuryFee=100% , for example.

Recommendation

We recommend adding validation for the treasuryFee and stakingModuleFee

parameters.

Update

LIDO's response

This is the expected behavior. The addition or update of a staking module requires an on-

chain Aragon vote to enact and the Lido governance token holders accept associated risks

to verify the input for the treasuryFee and stakingModuleFee correctness if support the

vote.

2.3.12 Missing error handling logic when calling

stakingModule in StakingRouter

SEVERITY WARNING

STATUS ACKNOWLEDGED

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L175
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L242

FINDINgs REPORT 31

Description

In the following lines there is no error handling or changing status of staking module to

DepositPaused or Stopped :

StakingRouter#L273

StakingRouter#L288

StakingRouter#L303

StakingRouter#L435

StakingRouter#L515

StakingRouter#L546

StakingRouter#L569

StakingRouter#L1120

Recommendation

We recommend to add error handing logic with try/catch block and set the status of the

contract to DepositsPaused or Stopped in cases of errors in function calls.

Update

LIDO's response

This is the intended design decision. The DepositPaused status will be set to the staking

module only in two cases:

an error occurred while trying to change withdrawalCredentials

DepositSecurityModule stoped the deposit for specific module

The updating module to the Stopped status requires an on-chain Aragon vote to enact and

the Lido governance token holders accept associated risks to verify the input status

correctness if support the vote.

2.3.13 Try catch can revert in StakingRouter

Description

In the following functions of the StakingRouter contract:

setWithdrawalCredentials

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L273
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L288
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L303
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L435
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L515
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L546
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L569
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1120
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1150
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1150

FINDINgs REPORT 32

reportRewardsMinted

onValidatorsCountsByNodeOperatorReportingFinished

try call can revert all transactions without executing catch . Try/catch reverts

transaction:

If an EOA address is called (e.g. address(0)).

If the target contract does not have the called method.

If the target contract returns a wrong number of arguments.

For example, in the setWithdrawalCredentials function stakingModuleAddress can

revert in the try block when onWithdrawalCredentialsChanged is called, if

stakingModuleAddress does not support the IStakingModule interface properly. In this

case withdrawal credentials of staking module cannot be changed.

Recommendation

We recommend adding validation that the stakingModuleAddress has a correct interface

before calling it.

Update

LIDO's response

The adding module to the StakingRouter requires an on-chain Aragon vote to enact and the

Lido governance token holders accept associated risks to verify the input for the

stakingModuleAddress correctness if support the vote.

The compatibility of a new staking module is have to be checked following the established

Lido DAO development process: internal peer-reviews, extensive integration and regression

tests, external audits, and the design guidelines and docs.

2.3.14 Underflow validation in Packed64x4

Description

In the functions get and set of Packed64x4 library there is no underflow protection of the

n variable. For example, the following expression (_self.v >> (64 * n)) can be

translated into _self.v / 2^(64*n) . If the n variable is passed greater than 3, it will

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L303
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L303
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L569
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L569
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1150
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1150
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/lib/Packed64x4.sol#L25
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/lib/Packed64x4.sol#L25
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/lib/Packed64x4.sol#L33
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/lib/Packed64x4.sol#L33

FINDINgs REPORT 33

underflow and return the result of the (n % 4) calculation, which is incorrect, since

_self.v / 2^(64*n) and _self.v / 2^(64*(n % 4)) are not equal expressions.

Recommendation

We recommend to enforce the value of n to be less than 4 or make sure that n cannot be

passed with user input, or, if the constants are used, they are not updated with contract

upgrades.

Update

LIDO's response

The risk is accepted because the library's client contract never violates the desctibed

invariant by design.

2.3.15 Total targetShare can be higher than 100% in

StakingRouter

Description

In the functions addStakingModule and updateStakingModule of the StakingRouter

contract the _targetShare variable is not validated properly. Target share is expressed as

the percentage of active validators in staking module to those in total across all modules

and is regulated by DAO. It is possible to set 2 staking modules with total target share more

than 100%.

Recommendation

We recommend to store total target share of all modules and validate the _targetShare

variable explicitly.

Update

LIDO's response

The addStakingModule and updateStakingModule methods calls on StakingRouter

requires an on-chain Aragon vote to enact and the Lido governance token holders accept

associated risks to verify _targetShare correctness for each module if support the vote.

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L178
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L178
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L244
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L244

FINDINgs REPORT 34

2.3.16 Missing remove module logic in StakingRouter

Description

In the StakingRouter contract there is no option to delete unused, or incorrectly set

staking modules. If the staking module was set with incorrect name or

stakingModuleAddress , or if the staking module is stopped and is not used in the future, it

cannot be deleted and will always be used in functions, that iterate over all staking modules

id.

Recommendation

We recommend to add a function to delete the deprecated modules.

Update

LIDO's response

The implementation of the module removal logic is planned in future.

2.3.17 Number of staking modules cannot be changed in

StakingRouter

Description

The MAX_STAKING_MODULES_COUNT variable in the StakingRouter contract is constant and

the amount of staking modules can be changed with setter functions, but at the same time

the MAX_STAKING_MODULES_COUNT variable is stored in the bytecode of implementation and

can be changed with implementation upgrade.

SEVERITY WARNING

STATUS ACKNOWLEDGED

SEVERITY WARNING

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol
https://github.com/lidofinance/lido-dao/tree/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L130
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L130

FINDINgs REPORT 35

Recommendation

We recommend to make MAX_STAKING_MODULES_COUNT a variable and add setter function

for modifying it in order to simplify MAX_STAKING_MODULES_COUNT upgrade. If the amount of

staking modules is designed to be not changeable, we recommend to use immutable

instead of constant .

Update

LIDO's response

Any change to a contract or variable will go through a DAO vote, so there is no need to add

a redundant method to update this variable.

FINDINgs REPORT 36

2.4 INFO

2.4.1 MANAGE_NODE_OPERATOR_ROLE is overpowered in

NodeOperatorsRegistry

Description

In the function setNodeOperatorRewardAddress in the NodeOperatorsRegistry contract

only the MANAGE_NODE_OPERATOR_ROLE can change the operator reward address. This way

the operator cannot change his reward address himself.

Recommendation

We recommend to add an option to change reward address for the operator.

2.4.2 Guardians are not stored in sorted array in

DepositSecurityModule

Description

In the function _addGuardian in the DepositSecurityModule contract guardians are not

stored in the sorted array and the getGuardians function will return unsorted array of the

guardians. While in the _verifySignatures function all the guardian signatures must be

passed as sorted array of guardians.

Recommendation

We recommend sorting guardians in the _addGuardian function.

SEVERITY INFO

STATUS ACKNOWLEDGED

SEVERITY INFO

STATUS NO ISSUE

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L375
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L375
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/DepositSecurityModule.sol#L286
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/DepositSecurityModule.sol#L286
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/DepositSecurityModule.sol#L438
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/DepositSecurityModule.sol#L438

FINDINgs REPORT 37

Update

LIDO's response

The mentioned method _verifySignatures uses the internal state of the guardians subset

only to check whether the address is included in the subset or not while the sorting itself

happens off-chain. Therefore, there is no need to store the guardians sorted.

2.4.3 require should be removed in Burner

Description

In the functions:

requestBurnMyStETHForCover

requestBurnMyStETH

recoverExcessStETH

the require with the transfer and transferFrom call is redundant since these two

functions in the stETH contract will always return true , except in situations when they

revert. But if the transfer or transferFrom functions revert the execution will not reach

the require statement.

Recommendation

We recommend removing the require check from these functions in order to keep the

codebase clean and save gas.

Update

LIDO's response

Fixed in commit: https://github.com/lidofinance/lido-dao/pull/735/commits/

e3ee224f547f6dd9224d57f684bf7c80c35e49f4

SEVERITY INFO

STATUS FIXED

https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/Burner.sol#L167
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/Burner.sol#L167
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/Burner.sol#L200
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/Burner.sol#L200
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/Burner.sol#L234
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/Burner.sol#L234
https://github.com/lidofinance/lido-dao/pull/735/commits/e3ee224f547f6dd9224d57f684bf7c80c35e49f4
https://github.com/lidofinance/lido-dao/pull/735/commits/e3ee224f547f6dd9224d57f684bf7c80c35e49f4

FINDINgs REPORT 38

2.4.4 key can be updated with the same value in

OracleDaemonConfig

Description

In the update function in the OracleDaemonConfig contract there is no validation that the

new _key variable equals the existing key .

Recommendation

We recommend validating that the new _key is not equal to the existing key .

Update

LIDO's response

Fixed in commit: https://github.com/lidofinance/lido-dao/pull/737/commits/

4c617c636c6a3d62766d04972a9ce98cd525c3a3

2.4.5 Int type initialization to zero is redundant

Description

There are a few places in the code where variables are initialized to zero:

NodeOperatorsRegistry.sol#L858

NodeOperatorsRegistry.sol#L938

NodeOperatorsRegistry.sol#L940

MinFirstAllocationStrategy.sol#L35

MinFirstAllocationStrategy.sol#L69

StakingRouter.sol#L295

StakingRouter.sol#L371

StakingRouter.sol#L780

SEVERITY INFO

STATUS FIXED

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/OracleDaemonConfig.sol#L41
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/OracleDaemonConfig.sol#L41
https://github.com/lidofinance/lido-dao/pull/737/commits/4c617c636c6a3d62766d04972a9ce98cd525c3a3
https://github.com/lidofinance/lido-dao/pull/737/commits/4c617c636c6a3d62766d04972a9ce98cd525c3a3
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L858
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L858
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L938
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L938
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L940
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L940
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/common/lib/MinFirstAllocationStrategy.sol#L35
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/common/lib/MinFirstAllocationStrategy.sol#L35
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/common/lib/MinFirstAllocationStrategy.sol#L69
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/common/lib/MinFirstAllocationStrategy.sol#L69
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L295
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L295
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L371
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L371
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L780
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L780

FINDINgs REPORT 39

StakingRouter.sol#L831

StakingRouter.sol#L998

These initializations are redundant because zero is the default value of int/uint type variable

in Solidity.

Recommendation

We recommend removing redundant initialization to zero.

Update

LIDO's response

While declaring variables in this case is redundant, the readability and clarity of code is

better.

2.4.6 STAKING_MODULE_INDICES_MAPPING logic is

redundant in StakingRouter

Description

In the function _setStakingModuleIndexById in the StakingRouter contract the

STAKING_MODULE_INDICES_MAPPING is redundant because the key of this mapping always

equals to value (id == index + 1).

Recommendation

We recommend removing redundant logic to safe gas and improve code readability.

Update

LIDO's response

Since it's planned to add a module removal feature in the next upgrades

STAKING_MODULE_INDICES_MAPPING is needed to allow proper modules enumeration and

access.

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L831
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L831
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L998
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L998
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L1278
https://github.com/lidofinance/lido-dao/blob/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L1278

FINDINgs REPORT 40

2.4.7 Unclear use of the moduleAddr variable in

StakingRouter

Description

In the unsafeSetExitedValidatorsCount function of the StakingRouter contract the

stakingModule.stakingModuleAddress variable is used while the moduleAddr variable is

already declared and used the same way in the unsafeSetExitedValidatorsCount

function.

Recommendation

We recommend to use the moduleAddr variable instead of

stakingModule.stakingModuleAddress in this place of code.

Update

LIDO's response

Fixed in commit: https://github.com/lidofinance/lido-dao/pull/741/commits/

2fb7299145f650d3dba02716a1c825ed925766ec

2.4.8 Typos in contracts

Description

In the function getTotalFeeE4Precision of the contract StakingRouter there is a typo

total fee total fee instead of total fee .

In the contract StakingRouter there is a typo panlty instead of penalty .

In the contract NodeOperatorsRegistry there is a typo timastamp instead of timestamp .

SEVERITY INFO

STATUS FIXED

SEVERITY INFO

STATUS FIXED

https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L488
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L488
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L477
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L477
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L503
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/StakingRouter.sol#L503
https://github.com/lidofinance/lido-dao/pull/741/commits/2fb7299145f650d3dba02716a1c825ed925766ec
https://github.com/lidofinance/lido-dao/pull/741/commits/2fb7299145f650d3dba02716a1c825ed925766ec
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.8.9/StakingRouter.sol#L952
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.8.9/StakingRouter.sol#L952
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L112
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L112
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L114
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L114

FINDINgs REPORT 41

In the contract NodeOperatorsRegistry there is a typo reawards instead of rewards .

In the function _removeUnusedSigningKeys in the contract NodeOperatorsRegistry there

is a typo comapring instead of comparing .

In the contract WithdrawalQueueBase there is a typo int the queue instead of in the

queue .

In the contract WithdrawalQueueBase there is a typo the resukt later instead of the

result later and the phrase is repeated two times.

In the contract WithdrawalQueueBase there is a typo intemediate instead of

intermediate .

In the contract WithdrawalQueueBase there are multiple typos invokations instead of

invocations .

In the contract WithdrawalQueueBase there is a typo better to me instead of better to

be .

In the contract NodeOperatorsRegistry there is a typo for this operator instead of for

all operators .

In the contract NodeOperatorsRegistry there is a typo TYPE_POSITION instead of

STUCK_PENALTY_DELAY_POSITION .

In the contract NodeOperatorsRegistry there is a typo to set reward address for

instead of to set staking limit for .

Recommendation

We recommend fixing the typos to keep the codebase clean.

Update

LIDO's response

Fixed in commit: https://github.com/lidofinance/lido-dao/pull/736/commits/

7a92c9c38faa70b26237ede5187acf4754e35506

https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L116
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L116
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L1069
https://github.com/lidofinance/lido-dao/tree/2bce10d4f0cb10cde11bead4719a5bcde76b93f9/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L1069
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L157
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L157
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L160
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L160
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L174
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L174
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L175
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L175
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L207
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.8.9/WithdrawalQueueBase.sol#L207
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L121
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L121
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L155
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L155
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L402
https://github.com/lidofinance/lido-dao/tree/ac06171909b752124069671e9676507c1f733a72/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L402
https://github.com/lidofinance/lido-dao/pull/736/commits/7a92c9c38faa70b26237ede5187acf4754e35506
https://github.com/lidofinance/lido-dao/pull/736/commits/7a92c9c38faa70b26237ede5187acf4754e35506

FINDINgs REPORT 42

2.4.9 Out-of-gas validation in StakingRouter

Description

In the reportRewardsMinted function of StakingRouter contract there is a try/catch

block for validation of the out-of-gas error, but the error UnrecoverableModuleError is

not used in the _estimate_gas function for recalculating of gas if the Ethereum nodes

proposed incorrect amount of gas.

Recommendation

We recommend recalculating neccessary amount of gas in _estimate_gas function if the

UnrecoverableModuleError occurs.

Update

LIDO's response

This revert was introduced for the Ethereum node to be able to predict gas properly (see the

comment to the code). Without this revert, gas estimation calculation was wrong and the

node believed that less gas is enough to send a transaction, since onRewardsMinted may

fall (including out-of-gas).

2.4.10 No logic for manual reward distribution in

StakingRouter

Description

In the getStakingRewardsDistribution function of the StakingRouter contract if the

module is stopped, the reward for that module will go to the Lido treasury, but there is no

logic for distributing the rewards to the staking module with the onRewardsMinted call. If

the module is unstopped and Lido DAO decides to transfer this rewards to the staking

SEVERITY INFO

STATUS ACKNOWLEDGED

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L303
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L303
https://github.com/lidofinance/lido-oracle/blob/3.0.0-rc.1/src/web3py/extensions/tx_utils.py#L90
https://github.com/lidofinance/lido-oracle/blob/3.0.0-rc.1/src/web3py/extensions/tx_utils.py#L90
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1022-L1027
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1022-L1027

FINDINgs REPORT 43

module, the onRewardsMinted call of the staking module will not be executed, since it is

very likely that this hook will be authorized from the StakingRouter contract.

Recommendation

We recommend adding a function for transferring rewards in this case with the

onRewardsMinted call in the StakingRouter contract.

Update

LIDO's response

Rewards distribution happens only on oracle report and cannot be called manually

currently.

However, the fee distribution model will be re-visited in future StakingRouter upgrades

when plugging-in new modules that use pull-based fee distribution approaches.

2.4.11 Missing on-chain validation in the function

requestWithdrawals in WithdrawalQueue during the

bunker mode

Description

In the function requestWithdrawals of the WithdrawalQueue contract stETH holders can

create withdrawal requests during the bunker mode.

Existing withdrawal requests are finalized by the oracle report in the function

_handleOracleReport of the Lido contract. By the protocol architecture withdrawal

requests created after bunker mode activation cannot be finalized prior to bunker mode

deactivation but no on-chain workflow ensures it.

Recommendation

We recommend implementing on-chain verification that the new withdrawal requests

cannot be finalized prior the bunker mode deactivation. Introducing a flag that marks the

requests created during the bunker mode may allow to ensure the condition on-chain.

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/WithdrawalQueue.sol#L125
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/WithdrawalQueue.sol#L125
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L853
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L853

FINDINgs REPORT 44

Update

LIDO's response

It's the expected behavior by the protocol withdrawals design since the bunker mode

activation can't be validated on the Execution Layer side in a trustless way.

2.4.12 Frontrun deposit_root for pausing deposits in

DepositSecurityModule

Description

In the function depositBufferedEther of the DepositSecurityModule contract there is a

check that the onchainDepositRoot on the deposit_contract has not changed and

equals the depositRoot provided from the calldata . According to the EIP-6110 there is a

probability for DoS vector with the minimal deposit amount as 1 ETH, even though it is not

related with the depositRoot , the risks related to the DoS of minimal deposit amount

should be considered. Thus, there is a risk of frontrunning every single transaction of the

depositBufferedEther and creating deposit directly through deposit_contract with

minimal stake amount in order to change the deposit_root and revert the execution of

the depositBufferedEther function which will lead to the pausing of deposits to all staking

modules.

In total there is a 24 * 60 * 60 / 12 = 7200 blocks on Ethereum network per day,

according to the beacon chain statistics the max day deposits is around 200.000 ETH per

day, which can be up to 200.000 validators taking in consideration that minimum deposit

amount is 1 ETH . Anyone can frontrun deposits signed by guardians in order to revert the

function execution and prevent Lido from staking. This attack can be executed with at least

7200 ETH in order to block Lido deposits for all day long, which is a very big amount of

ETH, but at the same time this ETH can be withdrawn from the beacon chain after adding

additional ETH up to 32 ETH . There is a probability, that this attack can take place, since the

attacker will not lose any funds, but at the same time there is no immediate profit. This

attack can be executed by other protocols that work with consensus layer staking during the

time when there are a lot of people willing to make a deposit to the beacon chain and by

pausing the deposits in Lido they will push users to try other liquid staking protocol. The

attack may be more harmful during the time of large MEV, preventing the LIDO protocol

from making deposits that otherwise would result in higher amounts of MEV captured. The

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/DepositSecurityModule.sol#L433
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/DepositSecurityModule.sol#L433
https://eips.ethereum.org/EIPS/eip-6110
https://beaconscan.com/stat/deposits

FINDINgs REPORT 45

cost of the attack is not significant for the major competitors of LIDO and is profitable when

matched against the values of MEV seen on the Beacon chain so far.

Recommendation

We recommend refactoring the deposit logic taking into consideration the possibility of the

DoS attack.

Update

LIDO's response

The private mempool is used for this kind of transaction on a regular basis. Also, the

described attack requires a huge amount of ETH because failed deposit transactions might

be resent once in a couple of blocks.

2.4.13 Mass slashing of non-Lido validators increases the

potential damage from malicious behavior of Lido node

operators

Description

Node operators actually control all users' staking ETH, because they control validators. A

node operator can slash its validators and the protocol will bear the losses. At the same

time, the node operator risks only income from working with Lido. A simplified formula for

such losses looks like this:

where:

 - balance of the validator.

 - sum of the balances of slashed validators in the last 36 days.

 - the total active balance of all validators.

In other words, under normal conditions, such a node operator will not cause significant

losses for Lido, but if mass slashing occurs in the network, then the node operator can thus

reduce the balance of validators down to 0.

SEVERITY INFO

STATUS ACKNOWLEDGED

3∗B∗S/T 3 * B * S / T 3 ∗ B ∗ S/T

BBB

SSS

TTT

FINDINgs REPORT 46

It is worth noting that the node operator can also benefit from slashing Lido validators by

providing evidence of the slashing behalf of its non-Lido validators. So, the node operator

may collude with a Lido competitor with a large pool of validators:

Firstly, because it is profitable for competitors to arrange slashes on Lido validators in

order to significantly reduce TVL.

Secondly, a Lido competitor with a large pool of validators can use them during block

proposals to register an evidence of slashings of the Lido validators and be rewarded for

it.

Recommendation

We recommend reducing the impact of each node operator on the entire protocol, for

example, by increasing their number relative to the total number of validators.

Update

LIDO's response

The risk is accepted and mitigated by implementing a more diversified validators set. To

lower the impact of node operators drastically, Lido would adopt withdrawal credentials

triggerable exits once and if they got implemented on Ethereum. Worth noting that

validator exits ordering is implemented with the same effort to make node operators stake

allocation more uniform (see the recently ratified exits policy: https://snapshot.org/#/lido-

snapshot.eth/proposal/

0xa4eb1220a15d46a1825d5a0f44de1b34644d4aa6bb95f910b86b29bb7654e330.

2.4.14 Large deposits and withdrawals during the limiter-

capped rebases in OracleReportSanityChecker

Description

In the function smoothenTokenRebase of the OracleReportSanityChecker contract a large

single-frame or multi-frame rebase (e.g. at the moment of high volatility) can be capped

several times producing large APR across several frames (~27% according to current

maxPositiveTokenRebase value of 0.075% , can be changed by the governance). Rebase

transaction can be front-runned by a large deposit in a protocol (daily staking limit is 150

000 ETH , ~2.5% of current TVL). Under current conditions rebase is limited at 4500 ETH . At

11 march, 2023 MEV paid to proposers amounted to 6113 ETH . It makes it profitable to

SEVERITY INFO

STATUS ACKNOWLEDGED

https://snapshot.org/#/lido-snapshot.eth/proposal/0xa4eb1220a15d46a1825d5a0f44de1b34644d4aa6bb95f910b86b29bb7654e330
https://snapshot.org/#/lido-snapshot.eth/proposal/0xa4eb1220a15d46a1825d5a0f44de1b34644d4aa6bb95f910b86b29bb7654e330
https://snapshot.org/#/lido-snapshot.eth/proposal/0xa4eb1220a15d46a1825d5a0f44de1b34644d4aa6bb95f910b86b29bb7654e330
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L351
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L351
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L368
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L368
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L933
https://explore.flashbots.net/
https://explore.flashbots.net/

FINDINgs REPORT 47

surround rebase transaction with deposit and withdraw transactions, making a profit of 112

ETH (150 000 ETH * 0.075%) per frame of maximal rebase. Several frames of maximal

rebase produce profit of 112 ETH multiplied by the number of frames. Similar situation is

observed with skipped frames, though under current conditions it takes 8 days with no

oracle report whatsoever to reach rebase limit. Skipped frames during high volatility time

produce even higher output.

While protocol benefits from deposits overall, sandwich type deposits over single frames do

not produce any positive effect other than diluting profits and exhausting available

validators key set. Deposits held over multi-frame capped rebases during periods of high

volatility are more profitable for the protocol, as additional liquidity allows to capture more

MEV. Positive feedback loop can be observed, as higher profits during those frames may

produce an influx of liquidity to the protocol, noticeably increasing its TVL, ending up with a

sharp withdrawals shortly after, likely with the effect of a massive flooding of the withdrawal

queue with significant amount of large withdrawals.

Current Beacon chain activation rate is around 2000 validators per day (~64000 ETH per

day). This is meaningful upper limit for deposits over single frame, any deposits over that

amount that ended up with a withdrawal in the next frame will produce nothing but a profit

dilution.

The current solution uses PositiveTokenRebaseLimiter to limit the rebase value over the

single frame. The protocol limits the staking amount per day, while it is capped at a value

that is significantly higher than beacon chain processing capacity. The deposits can be

withdrawn in the next frame without producing any profit on the consensus layer, while

such deposits will participate in reward distribution together with all other stakers. This

allows to capture profit without producing any benefit for the protocol.

Recommendation

Several suggestion may be offered to optimize the protocol workflow during the capped

rebases.

1) Dynamic staking limit will give more flexibility over large deposits during the time of high

income. Strategies based on floating staking limit may help to encourage deposits that help

to generate more income, while discouraging those that are made by the high APR hunters.

2) Distribute the income solely over the deposits that arrived to beacon chain, thus

participated in producing protocol income. This option may be activated just at the time of

high rebase, encouraging the stakers for prolonged deposits.

3) Make a withdrawal finalization longer for the stakes made during the period of the

capped rebase activation.

4) Consider the current activation rate and activation queue length in adjusting the staking

limit, which will allow to limit the dilution of profit only to stakes that arrived to beacon

chain and thus participated in the production of the income.

https://notes.ethereum.org/@launchpad/withdrawals-faq#Q-How-fast-will-I-be-able-to-make-a-partial-withdrawal-Or-when-will-I-get-access-to-the-excess-rewards-that-are-on-my-validator
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/lib/PositiveTokenRebaseLimiter.sol
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/lib/PositiveTokenRebaseLimiter.sol
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L933

FINDINgs REPORT 48

Update

LIDO's response

This risk is accepted since the protocol doesn't have total exposure to market conditions,

but a set of measures to mitigate already known and possible attack vectors. Therefore, it's

could be theoretically possible to build sophisticated market strategies that lead to short-

term profits when outstanding network events happen.

However, the proposed vector has different possible mitigations to prevent attack become

sustainable: lowering the token rebase limit, extending withdrawal finalization time, and

changing the daily staking limit by the DAO governance vote once suspicious behavior

observed.

Worth noting that withdrawals are backed by buffered ether whenever it's possible, thus if

an attacker decides to exit, they either effectively get their funds back from buffer or wait till

enough exited validators appear (if request was placed after the real deposit to Beacon

Chain). Therefore, in the first case, massive validators activation/exit process isn't a case,

while for the second case the attacker short-term rewards will be dilluted by the waiting

time in a queue.

2.4.15 "Memory Array Creation Overflow" compiler bug

Description

In the functions:

getNodeOperatorIds

_getSigningKeysAllocationData

getRewardsDistribution

getSigningKeys

_transferModuleRewards

in the NodeOperatorsRegistry and Lido contracts there is a possibility of "Memory Array

Creation Overflow" Solidity compiler bug. The creation of very large memory arrays can

result in overlapping memory regions and thus memory corruption. In cases when memory

size of an array is in bytes, i.e. the array length times 32, is larger than 2^256-1, the memory

allocation will overflow, potentially resulting in overlapping memory areas. The length of the

array is still stored correctly, so copying or iterating over such an array will result in out-of-

gas. The functions above are protected from the array overflow by the out-of-gas error, and

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L1281
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L1281
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L820-L823
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L820-L823
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L950-L953
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L950-L953
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L1169
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L1169
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L1061
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L1061
https://blog.soliditylang.org/2020/04/06/memory-creation-overflow-bug/
https://blog.soliditylang.org/2020/04/06/memory-creation-overflow-bug/

FINDINgs REPORT 49

the overflow may take place only in the function _getSigningKeysAllocationData , in case

activeNodeOperatorsCount is bigger than nodeOperatorsCount , which in theory may

happen during incorrect implementation upgrade.

Recommendation

We recommend to pay more attention to contract upgrades and take into consideration

that memory arrays must be limited in length up to type(uint64).max .

Update

LIDO's response

The risk of incorrect implementation upgrade is accepted by the Lido DAO since the

upgrade requires an on-chain Aragon vote to enact supported by the governance token

holders.

The compatibility of a new implementation is have to be checked following the established

Lido DAO development process: internal peer-reviews, extensive integration and regression

tests, external audits, and the design guidelines and docs.

2.4.16 ECDSA signature malleability in the OpenZeppelin

library in EIP712StETH

Description

In the contract EIP712StETH there is an import from the ECDSA library, which has signature

malleability with the recover and tryRecover functions. In this affected version, user may

take a signature that has already been submitted, submit it again in a different form, and

replay the signature.

In other contracts custom ECDSA library is used for the recover function without

malleability. During the contract development/upgrade of implementation the vulnerable

contract version may be used by mistake creating a big security risk.

Recommendation

We recommend to remove import from the OpenZeppelin ECDSA library from the contract

and migrate toTypedDataHash to the custom ECDSA library.

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/EIP712StETH.sol#L7
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/EIP712StETH.sol#L7
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/common/lib/ECDSA.sol
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/EIP712StETH.sol#L103
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/EIP712StETH.sol#L103

FINDINgs REPORT 50

Update

LIDO's response

The proposed recommendation will be considered for implementation in future versions.

2.4.17 Explicit cast to address in StakingRouter

Description

In the function getStakingRewardsDistribution there is an explicit cast of the

stakingModuleAddress variable to address, when it is already of an address type.

Recommendation

We recommend to remove the cast to address in order to keep the codebase clean.

Update

LIDO's response

The proposed recommendation will be considered for implementation in future versions.

2.4.18 UINT64_MAX explicitly declared in

NodeOperatorsRegistry

Description

In the contract NodeOperatorsRegistry the constant UINT64_MAX is explicitly declared,

since it already exists in the Packed64x4 library.

SEVERITY INFO

STATUS ACKNOWLEDGED

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/StakingRouter.sol#LL1020C48-L1020C48
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/StakingRouter.sol#LL1020C48-L1020C48
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L83
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/nos/NodeOperatorsRegistry.sol#L83
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/lib/Packed64x4.sol#L18
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/lib/Packed64x4.sol#L18

FINDINgs REPORT 51

Recommendation

We recommend to remove the UINT64_MAX variable from the NodeOperatorsRegistry

contract and, instead, use the same variable from Packed64x4 library in order to save

bytecode and keep the codebase clean.

Update

LIDO's response

The proposed recommendation will be considered for implementation in future versions.

2.4.19 Link does not exist in StETH

Description

In the StETH contract the link leads to the page, which was deleted and was not saved on

the Wayback Machine website.

Recommendation

We recommend to remove the link in order to keep the codebase clean.

Update

LIDO's response

The comment will be fixed in future releases.

SEVERITY INFO

STATUS ACKNOWLEDGED

https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/StETH.sol#L78
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/StETH.sol#L78

AUDITED

INCIDENTs

REPORT
3

AUDITED INCIDENTs REPORT 53

3.1 AUDITED INCIDENTs REPORT

3.1.1 DSM can initiate a deposit between ref_slot and

the oracle report execution block

Description

The deposit function of the Lido contract can be called by DSM just before the oracle

report transaction thus reducing the buffered ETH value. It can lead to the situation that

buffered ETH is not enough for withdrawal requests finalization in the

_handleOracleReport function of the Lido contract. Because oracle prepares a set of

withdrawal requests for finalization (withdrawal_batches) using buffered ETH value in

ref_slot block.

Solution

In the function getDepositableEther in the Lido contract there is a calculation that the

buffered ETH value is not less than the sum of unfinalized withdrawal requests after deposit

execution in the deposit function of the Lido contract. Thus the existing check is enough

and this potential incident is handled carefully by the protocol.

3.1.2 StETH/ETH stability during bunker mode

Description

In the get_finalization_batches function in the withdrawal.py file withdrawal requests

are not finalized during bunker mode, which can become a reason of moving the price in

stETH/ETH pool from 1/1 to other values, leading to money loss of the stETH holders,

liquidations on the lending platforms, increasing the posibility of the "bunkrun" from Lido

staking.

Solution

The _get_associated_slashings_border_epoch function in the safe_border.py file

represents the latest epoch before associated slashings started. During the bunker mode,

withdrawal requests are accepted and user can exit Lido staking in order to stop taking risks

of further slashings. Since slashing is associated with the withdrawal request, after the

slashing is covered the withdrawal request will pass the associated slashing border and it

https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L694
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L694
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L853
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L853
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L682
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L682
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L701-L704
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.4.24/Lido.sol#L701-L704
https://github.com/lidofinance/lido-oracle/blob/3.0.0-rc.1/src/services/withdrawal.py#L49
https://github.com/lidofinance/lido-oracle/blob/3.0.0-rc.1/src/services/withdrawal.py#L49
https://github.com/lidofinance/lido-oracle/blob/3.0.0-rc.1/src/services/safe_border.py#L110
https://github.com/lidofinance/lido-oracle/blob/3.0.0-rc.1/src/services/safe_border.py#L110

AUDITED INCIDENTs REPORT 54

can be finalized, user will receive his funds no matter how much slashings will occur later

during the covering process. Taking into the consideration that before the Lido update there

was no withdrawals and users continue to hold stETH tokens in the liquidity provider pools

for collecting fees, the price stability in the pool will more likely remain as it is, even though

the withdrawal process will take longer time.

We would like to draw extra attention to the case when the informed actor that monitors

the LIDO performance on the CL layer and knows in advance that the bunker mode will get

activated in the next frame, will prefer to swap large amount of stETH in the Curve pool to

avoid socialized losses and lack of the withdrawal possibility until the bunker mode gets

deactivated. This is profitable to the margin when the swap slippage becomes larger than

the potential loss of socialized slashings. This may result in unbalanced Curve pool, depeg of

stETH from ETH with all the possible consequences for the third parties.

3.1.3 getStakingRewardsDistribution returns empty

values for stopped modules in StakingRouter

Description

In the function handleOracleReport in the Lido contract during the _processRewards

function call the fee is distributed only to the profitable reports. If the report was profitable

the Lido contract will call StakingRouter with the getStakingRewardsDistribution call

for calculations. If the module is stopped, but it has active validators, the module will be

present in the return arrays of this function, but the stakingModuleFee of this module will

be zero.

Solution

The module with empty fees will be present in all for loops in the

_transferModuleRewards function in the Lido contract and reportRewardsMinted in the

StakingRouter contract, but the calculations will not be proceeded with the module and

there will be no onRewardsMinted call, which is the correct logic that does not create any

problems when returning empty values from arrays, but it still costs gas for iterating over

the loop for the stopped modules with active validators, which should be refactored.

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L572
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L572
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L895
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L895
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L986
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L986
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L990-L992
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1028
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1028
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1063
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1063
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L300
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L300
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L303
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L303

AUDITED INCIDENTs REPORT 55

3.1.4 Length of _depositCalldata does not equal

amount of deposits in StakingRouter

Description

In the deposit function of the StakingRouter contract the _depositCalldata variables'

length is not validated with the _depositsCount . For example, it is possible to pass 2

deposits with 1 key, which will lead to revert, or with 3 keys which will lead to 1 unused key,

because the _depositsCount variable is passed to _makeBeaconChainDeposits32ETH

function. A call to the deposit_contract contract with incorrect pubkey to signature

variables can lead to corrupt deposits where the signature cannot verify its pubkey .

Solution

In the obtainDepositData function call to the stakingModuleAddress contract returned

publicKeysBatch and signaturesBatch must return the exact number of requested keys

according to the pull request. Even if the staking module does not return correct amount of

public keys and signatures, there is a check _makeBeaconChainDeposits32ETH function

preventing incorrect handling of these variables. Futhermore, in the deposit function of

the deposit_contract there is a sanity check for the provided data length.

3.1.5 False-positive stop accepting deposits in

DepositSecurityModule

Description

In the function pauseDeposits of the DepositSecurityModule contract it is enough to

have one vote of a committee member to pause accepting deposits for a certain module for

days, until the module is unpaused by the DAO.

Solution

The DepositEvent in the deposit_contract is monitored by the committee members.

They verify the signatures of the deposit, and also check that the withdrawal_credentials

of the deposit matches the withdrawal_credentials obtained from the function

getWithdrawalCredentials of the StakingRouter contract. If withdrawal_credentials

does not match, the module of this public key is paused. In other words, only the node

operator of this module can deceive the monitoring system and pause the module.

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1093
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1093
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1125
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1125
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1121
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/StakingRouter.sol#L1121
https://github.com/lidofinance/lido-dao/pull/626
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/BeaconChainDepositor.sol#L47-L52
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/BeaconChainDepositor.sol#L47-L52
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.6.11/deposit_contract.sol#L108-L110
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.6.11/deposit_contract.sol#L108-L110
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/DepositSecurityModule.sol#L342
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/DepositSecurityModule.sol#L342
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.6.11/deposit_contract.sol#L120
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.6.11/deposit_contract.sol#L120
https://github.com/lidofinance/lido-council-daemon/blob/1.8.2/src/contracts/deposit/deposit.service.ts#L363
https://github.com/lidofinance/lido-council-daemon/blob/1.8.2/src/guardian/staking-module-guard/staking-module-guard.service.ts#L153
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/StakingRouter.sol#L1171
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/StakingRouter.sol#L1171

AUDITED INCIDENTs REPORT 56

False-positive stop on behalf of the committee members themselves is not a big problem,

since such members could be excluded in case of malicious intent.

3.1.6 Oracle accounting report flow over skipped frames

Description

Accounting oracle report is delivered by the group of off-chain oracles, which deliver report

based on predefined time intervals and employ consensus mechanism to agree on the

matching report data. After consensus is reached, the report is checked for the data

correctness and matched against the limits set up by the protocol governance. Then the on-

chain state of the protocol is updated and matched against the share rate limit.

The current workflow allows the case when report will not be accepted, which will result in

the skipped frame. This may happen due to lack of the consensus, incorrectness of the

report, or by incorrect data supplied by beacon chain nodes.

Solution

By the logic of the protocol, all the changes that were not accounted in the current frame

will be accounted in the next one, all the changes on the consensus layer whether positive

or negative will be delievered with the next successful report.

Detailed look into oracle report flow when one or several frames were skipped, produced

the following picture.

The off-chain oracle will:

1) In the function _get_consensus_lido_state of the Accounting class calculate the

validators count and balances for the current ref slot.

2) In the function _get_newly_exited_validators_by_modules of the Accounting class

count newly exited validators for all skipped frames.

3) In the functions get_lido_newly_stuck_validators and

get_lido_newly_exited_validators of the LidoValidatorStateService class count all

the newly exited and stuck validators.

4) In the function simulate_full_rebase of the Accounting class simulate the rebase

accounting for the skipped frames.

5) In the function _is_bunker of the Accounting class calculate the bunker mode

condition based on average values over skipped frames.

6) In the function _get_finalization_data of the Accounting class calculate the

simulated share rate based on the current amount of ETH and shares.

7) In the function _get_finalization_data of the Accounting class calculate finalization

batches based on the simulated share rate and current balances of vaults.

8) In the function _get_finalization_data of the Accounting class report current

balances of EL and Withdrawal vaults, and current amount of shares to burn.

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/oracle/HashConsensus.sol#L644
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/oracle/HashConsensus.sol#L945
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1202
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1202
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L433
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1242
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1288
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L209
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L209
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L178
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L178
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/services/validator_state.py#L57
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/services/validator_state.py#L57
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/services/validator_state.py#L145
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/services/validator_state.py#L145
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L247
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L247
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L317
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L317
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L224
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L224
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L228
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L228
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L160
https://github.com/lidofinance/lido-oracle/blob/e50088b0cc51d3ae8954f5651348fb1405bdf61f/src/modules/accounting/accounting.py#L160

AUDITED INCIDENTs REPORT 57

The on-chain oracle contract will:

1) In the function _submitReport of the HashConsensus contract produce the correct

consensus for the current ref slot.

2) In the function checkAccountingOracleReport of the OracleReportSanityChecker

contract check the report with sanity checker.

3) In the function _handleOracleReport of the LIDO contract calculate withdrawals and

request shares to burn.

4) In the function smoothenTokenRebase of the OracleReportSanityChecker contract

smoothen the token rebase.

5) In the function _handleOracleReport of the LIDO contract finalize rewards and

withdrawals.

6) In the function _handleOracleReport of the LIDO contract burn shares.

7) In the function _handleOracleReport of the LIDO contract process rewards based on

smoothed value of the rebase.

8) In the function checkSimulatedShareRate of the OracleReportSanityChecker contract

check simulated share rate.

3.1.7 Consequences of reverts in

OracleReportSanityChecker

Description

The OracleReportSanityChecker performs several kind of checks leading to reverts:

Check for monotonic increase in vaults balances and shares requested to burn:

_checkWithdrawalVaultBalance , _checkELRewardsVaultBalance ,

_checkSharesRequestedToBurn .

Check for correctness of data from CL layer: _checkAppearedValidatorsChurnLimit ,

checkExitedValidatorsRatePerDay .

Check for correctness of data delivered by the oracle: checkExitBusOracleReport ,

checkNodeOperatorsPerExtraDataItemCount ,

checkAccountingExtraDataListItemsCount , _checkLastFinalizableId .

Check against the limits set as protocol parameters: _checkOneOffCLBalanceDecrease ,

_checkAnnualBalancesIncrease , _checkSimulatedShareRate .

In case when any of the mentioned checks fail, it will result in a skipped report. While the

protocol will not be supplied with the incorrect data, the condition leading to the revert

should be addressed.

https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/oracle/HashConsensus.sol#L860
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/oracle/HashConsensus.sol#L860
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L409
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L409
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1211
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1211
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L351
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L351
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1242
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1242
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1264
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1264
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1269
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.4.24/Lido.sol#L1269
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L516
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L516
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol
https://github.com/lidofinance/lido-dao/blob/v2.0.0-rc.2/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L536
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L536
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L545
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L545
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L554
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L554
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#603
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#603
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L458
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L458
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L446
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L446
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L472
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L472
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L484
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L484
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L617
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L617
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L562
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L562
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L575
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L575
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L632
https://github.com/lidofinance/lido-dao/blob/e45c4d6fb8120fd29426b8d969c19d8a798ca974/contracts/0.8.9/sanity_checks/OracleReportSanityChecker.sol#L632

AUDITED INCIDENTs REPORT 58

Solution

Conditions of monotonic increase of EL and Withdrawal vaults balances and shares

requested to burn are intra-frame checks of the correctness of supplied data. Report

supplying the incorrect data will be skipped. The report in the next frame will report the

actual data of the vault balances and shares and is expected to be correct, unless there is a

factor that leads to draining of the vaults balances or an issue with the contracts or the

oracle.

All conditions checked against limits, including the checks for correctness of CL and oracle

data, are leading to the revert of the report and are fixed by updating the limits with an

attempt to submit the report once again. If not done within the report deadline the report

frame will be skipped.

3.1.8 Malicious DAO proposal

Description

LDO is the governance token of Lido protocol. LDO holders can create DAO proposals and

vote for them. The current LDO circulating supply is 876,809,361 LDO. And clear circulating

supply (excluding DAO treasury) is about 765,351,649 LDO. It is about $1.5b at the current

moment.

Also, there are the next parameters of Lido DAO proposals:

For a DAO vote to pass, it’s currently required that at least 5% of total voting power

(common mistake is to think it’s 5% of circulating token supply) supports the outcome

AND more voting power supports the outcome than objects to it.

So if the attacker plans to accept a malicious DAO proposal, $0.75b in LDO tokens is enough

to accept DAO proposal regardless of how other LDO holders vote. In practice, this value

may be even less because not all holders will vote against it. As Lido protocol TVL is more

than $11b at the current moment, this attack can be profitable.

For example, as most Lido contracts are upgradable, the attacker can implement a DAO

proposal that upgrades some of the contracts to a malicious implementation.

The main problem for the attacker here is to accumulate the needed amount of LDO tokens.

There is no such huge amount of LDO tokens on the open market. So even if the attacker

has $0.75b, they cannot buy the needed amount of LDO tokens immediately. There are two

options for the attacker:

They can accumulate tokens for a long time, which is a very complex and not

predictable task for the attacker.

There is the next LDO initial token distribution:

DAO treasury - 36.32%

1.

2.

◦

https://coinmarketcap.com/currencies/lido-dao/
https://etherscan.io/token/0x5a98fcbea516cf06857215779fd812ca3bef1b32#balances
https://hackmd.io/@skozin/HkiEBPiO5
https://blog.lido.fi/introducing-ldo/

AUDITED INCIDENTs REPORT 59

Investors - 22.18%

Validators and signature holders - 6.5%

Initial Lido developers - 20%

Founders and future employees - 15%

Thus limited set of vesting holders already have the needed amount of LDO tokens.

Moreover, insufficient liquidity on the open market (for such huge volumes) works in

the opposite direction in this case. It is not possible to swap $0.75b in LDO tokens for

$0.75b in ETH, but in case of a successful attack TVL in ETH is under risk. This way

Lido protocol security depends on the vesting holders’ custody services.

Both of these options are highly unlikely, but worth to be taken into account.

◦

◦

◦

◦

CONCLUsION

4

CONCLUsION 61

The following table contains the total number of issues that were found during audit:

Severity FIXED ACKNOWLEDGED NO ISSUE Total

CRITICAL 0 0 0 0

MAJOR 0 7 0 7

WARNING 0 16 1 17

INFO 4 14 1 19

TOTAL 4 37 2 43

THANK YOU FOR CHOOsINg

	Lido V2. On-chain audit report
	Intro
	Disclaimer
	About Oxorio
	Security Assessment Methodology
	Findings Classification
	Severity Level Reference
	Status Level Reference

	Project overview
	Audit Scope

	Findings Report
	CRITICAL
	MAJOR
	Missing validation for _withdrawalCredentials in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response
	Oxorio's response

	Missing _publicKeys and _signatures validation in NodeOperatorsRegistry
	Description
	Recommendation
	Update
	LIDO's response

	There is no check for equal constructor variables in DepositSecurityModule
	Description
	Recommendation
	Update
	LIDO's response

	checkAccountingOracleReport may revert in case of skipped frames in OracleReportSanityChecker
	Description
	Recommendation
	Update
	LIDO's response

	Missing validation in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Lack of validation of _stakingModuleAddress in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	REQUEST_BURN_SHARES_ROLE can withdraw stETH for burning at any time in Burner
	Description
	Recommendation
	Update
	LIDO's response

	WARNING
	Possibility of overflow in Burner
	Description
	Recommendation
	Update
	LIDO's response

	Allowance cannot be reset in Lido
	Description
	Recommendation
	Update
	LIDO's response

	Interface support in LidoLocator
	Description
	Recommendation
	Update
	LIDO's response

	All balance is used for rewards in LidoExecutionLayerRewardsVault
	Description
	Recommendation
	Update
	LIDO's response

	All balance is used for withdrawals in WithdrawalVault
	Description
	Recommendation
	Update
	LIDO's response

	Missing validations in unsafeChangeDepositedValidators in Lido
	Description
	Recommendation
	Update
	LIDO's response

	Members of the deposit committee can collude with node operators in DepositSecurityModule
	Description
	Recommendation
	Update
	LIDO's response

	Missing sanity check that _stETH is a stETH contract in Burner
	Description
	Recommendation
	Update
	LIDO's response

	Missing validation for duplication of staking module names in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Missing logic for updating staking module name in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Missing validation for treasuryFee and stakingModuleFee in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Missing error handling logic when calling stakingModule in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Try catch can revert in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Underflow validation in Packed64x4
	Description
	Recommendation
	Update
	LIDO's response

	Total targetShare can be higher than 100% in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Missing remove module logic in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Number of staking modules cannot be changed in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	INFO
	MANAGE_NODE_OPERATOR_ROLE is overpowered in NodeOperatorsRegistry
	Description
	Recommendation

	Guardians are not stored in sorted array in DepositSecurityModule
	Description
	Recommendation
	Update
	LIDO's response

	require should be removed in Burner
	Description
	Recommendation
	Update
	LIDO's response

	key can be updated with the same value in OracleDaemonConfig
	Description
	Recommendation
	Update
	LIDO's response

	Int type initialization to zero is redundant
	Description
	Recommendation
	Update
	LIDO's response

	STAKING_MODULE_INDICES_MAPPING logic is redundant in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Unclear use of the moduleAddr variable in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Typos in contracts
	Description
	Recommendation
	Update
	LIDO's response

	Out-of-gas validation in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	No logic for manual reward distribution in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	Missing on-chain validation in the function requestWithdrawals in WithdrawalQueue during the bunker mode
	Description
	Recommendation
	Update
	LIDO's response

	Frontrun deposit_root for pausing deposits in DepositSecurityModule
	Description
	Recommendation
	Update
	LIDO's response

	Mass slashing of non-Lido validators increases the potential damage from malicious behavior of Lido node operators
	Description
	Recommendation
	Update
	LIDO's response

	Large deposits and withdrawals during the limiter-capped rebases in OracleReportSanityChecker
	Description
	Recommendation
	Update
	LIDO's response

	"Memory Array Creation Overflow" compiler bug
	Description
	Recommendation
	Update
	LIDO's response

	ECDSA signature malleability in the OpenZeppelin library in EIP712StETH
	Description
	Recommendation
	Update
	LIDO's response

	Explicit cast to address in StakingRouter
	Description
	Recommendation
	Update
	LIDO's response

	UINT64_MAX explicitly declared in NodeOperatorsRegistry
	Description
	Recommendation
	Update
	LIDO's response

	Link does not exist in StETH
	Description
	Recommendation
	Update
	LIDO's response

	Audited incidents report
	Audited incidents report
	DSM can initiate a deposit between ref_slot and the oracle report execution block
	Description
	Solution

	StETH/ETH stability during bunker mode
	Description
	Solution

	getStakingRewardsDistribution returns empty values for stopped modules in StakingRouter
	Description
	Solution

	Length of _depositCalldata does not equal amount of deposits in StakingRouter
	Description
	Solution

	False-positive stop accepting deposits in DepositSecurityModule
	Description
	Solution

	Oracle accounting report flow over skipped frames
	Description
	Solution

	Consequences of reverts in OracleReportSanityChecker
	Description
	Solution

	Malicious DAO proposal
	Description

	Conclusion

