
Lido L2 Smart Contracts Security

Audit Report

July 21, 2022

2

List of contents

1. Introduction ... 3

1.1. Disclaimer ... 3

1.2. Security Assessment Methodology .. 3

1.2.1 Severity Level Reference .. 4

1.2.2 Status Level Reference .. 4

1.3. Project overview ... 4

1.4. Audit Scope .. 4

1.4.1 Assumptions ... 5

2. Report .. 6

2.1. CRITICAL .. 6

2.1.1 User looses their funds if maxSubmissionCost is low ... 6

2.2. MAJOR ... 7

2.2.1 User may loose their funds if msg.value, maxGas_ or gasPriceBid_ is low 7

2.3. WARNING .. 8

2.3.1 Not all the ERC20 tokens are supported .. 8

2.4. INFO .. 9

2.4.1 Pragma is not locked ... 9

2.4.2 Public function could be declared external ... 10

2.4.3 Import is not used .. 11

2.4.4 Modifier onlyAdmin may be misleading .. 11

2.4.5 Redundant checks .. 12

2.4.6 Transaction censoring is possible ... 13

3. Conclusion .. 14

4. About Oxorio ... 15

Introduction 3

1 Introduction

1.1 Disclaimer

The audit makes no statements or warranties about utility of the code, safety of the code,

suitability of the business model, investment advice, endorsement of the platform or its products,

regulatory regime for the business model, or any other statements about fitness of the contracts

to purpose, or their bug free status. The audit documentation is for discussion purposes only.

1.2 Security Assessment Methodology

A group of auditors are involved in the work on this audit. Each of them check the provided

source code independently of each other in accordance with the security assessment

methodology described below:

1. Project architecture review:

Manually code study of the architecture of the code based on the source code only to find out

the errors and bugs.

2. Check the code against the list of known vulnerabilities

Verification process of the code against the constantly updated list of already known

vulnerabilities maintained by the company.

3. Architecture and structure check of the security model

Study project documentation and its comparison against the code including the study of the

comments and other technical papers.

4. Result’s cross-check by different auditors

Normally the research of the project is made by more than two auditors. After that, there is a

step of the mutual cross-check process of audit results between different task performers.

5. Report consolidation

Consolidation of the audited report from multiple auditors.

6. Reaudit of new editions

After the client’s review and fixes, the founded issues are being double-checked. The results are

provided in the new audit version.

7. Final audit report publication

Introduction 4

The final audit version is prepared and provided to the client and also published on the official

website of the company.

1.2.1 Severity Level Reference

Findings discovered during the audit are classified as follows: Every issue in this report was

assigned a severity level from the following:

CRITICAL: A bug leading to assets theft, fund access locking, or any other loss of funds due

to transfer to unauthorized parties.

MAJOR: A bug that can trigger a contract failure. Further recovery is possible only by

manual modification of the contract state or replacement.

WARNING: A bug that can break the intended contract logic or expose it to DDoS attacks.

INFO: Minor issue or recommendation reported to / acknowledged by the client's team.

1.2.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings discovered by

the contractor, the following statuses were assigned to the findings:

NEW: Waiting for the project team's feedback.

FIXED: Recommended fixes have been made to the project code and the identified issue

no longer affects the project's security.

ACKNOWLEDGED: The project team is aware of this finding. Recommended fixes for this

finding are planned to be made. This finding does not affect the overall security of the

project.

NO ISSUE: Finding does not affect the overall security of the project and does not violate

the logic of its work

DISMISSED: The issue or recommendation was dismissed by the client.

1.3 Project overview

This project contains the implementation of the L2 ERC20 token bridges for Arbitrum and

Optimism chains. The current solution allows transferring ERC20 tokens between L1 and L2

chains.

1.4 Audit Scope

The scope of the audit includes the following smart contracts at:

BridgeableTokens.sol

BridgingManager.sol

token/ERC20Core.sol

token/ERC20Metadata.sol

token/ERC20Bridged.sol

proxy/OssifiableProxy.sol

optimism/CrossDomainEnabled.sol

optimism/L1ERC20TokenBridge.sol

optimism/L2ERC20TokenBridge.sol

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/BridgeableTokens.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/BridgingManager.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/token/ERC20Core.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/token/ERC20Metadata.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/token/ERC20Bridged.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/proxy/OssifiableProxy.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/optimism/CrossDomainEnabled.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/optimism/L1ERC20TokenBridge.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/optimism/L2ERC20TokenBridge.sol

Introduction 5

arbitrum/InterchainERC20TokenGateway.sol

arbitrum/L1CrossDomainEnabled.sol

arbitrum/L1ERC20TokenGateway.sol

arbitrum/L2CrossDomainEnabled.sol

arbitrum/L2ERC20TokenGateway.sol

The audited commit identifier is 082e7eb59de63bd376b30886568813408d04f00b

1.4.1 Assumptions

Reverted transaction between Optimism and L1 may always be replayed

•

•

•

•

•

•

https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/arbitrum/InterchainERC20TokenGateway.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/arbitrum/L1CrossDomainEnabled.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/arbitrum/L1ERC20TokenGateway.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/arbitrum/L2CrossDomainEnabled.sol
https://github.com/lidofinance/lido-l2/blob/082e7eb59de63bd376b30886568813408d04f00b/contracts/arbitrum/L2ERC20TokenGateway.sol
https://github.com/lidofinance/lido-l2/commit/082e7eb59de63bd376b30886568813408d04f00b

Report 6

2 Report

2.1 CRITICAL

2.1.1 User looses their funds if maxSubmissionCost is

low

Description

L1ERC20TokenGateway.sol#L61

There is no checks for maxSubmissionCost value. The Arbitrum docs says:

If an L1 transaction underpays for a retryable ticket's base submission free, the retryable ticket

creation on L2 simply fails. Given that this potentially breaks the atomicity of the L1 / L2

transactions, applications should avoid this scenario. ... it is highly recommended that

applications judiciously overpay relative to the current price.

After that funds are impossible to restore, they are locked on the contract.

Recommendation

Check that maxSubmissionCost is at least ArbRetryableTx.getSubmissionPrice .

The current base submission fee returned by ArbRetryableTx.getSubmissionPrice

increases once every 24 hour period by at most 50% of its current value. Giving the risk of

loosing bridged funds it's best to set it higher than the current.

Update

Lido's response

Fix: https://github.com/lidofinance/lido-l2/pull/4

As shown in the description of the finding, the problem concerns not only the

L1ERC20TokenGateway contract but the current Arbitrum's L1 -> L2 messages passing design

as a whole. Such kind of failure, for example, also might take place in the default

L1GatewayRouter contract. At this point, there is no convenient way to validate the passed

maxSubmissionCost value from the L1 chain. The recommendation provided by the Oxorio

team is not feasible because the ArbRetryableTx contract does not exist on the Ethereum

chain, only on Arbitrum. However, additional validation for the zero value of

Severity CRITICAL

Status ACKNOWLEDGED

https://github.com/lidofinance/lido-l2/blob/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/arbitrum/L1ERC20TokenGateway.sol#L61
https://developer.offchainlabs.com/docs/l1_l2_messages#important-note-about-base-submission-fee

Report 7

maxSubmissionCost was added into the L1ERC20TokenGateway , to provide same

garuantees as L1GatewayRouter .

In the next update of the Arbitrum protocol titled Nitro, the validation logic for the submission

fee will be moved to the L1 chain. According to the documentation of the Arbitrum protocol:

In a future release, the base submission fee will be calculated using the 1559 BASE_FEE and

collected directly at L1; underpayment will simply result in the L1 transaction reverting...

The devnet with Nitro update has been successfully launched by the Arbitrum team. The next

stage is the official testnet launch and mainnet release. This update will eliminate the issue. The

updated version of the Inbox contract that validates the passed maxSubmissionCost value

might be found here: https://github.com/OffchainLabs/nitro/blob/

21ce4812a7d202e41c165b8ec1c9154801325e1c/contracts/src/bridge/Inbox.sol#L430-L432.

But even the usage of the current version of the Arbitrum with an incorrect

maxSubmissionCost value will not lead to a complete loss of the user funds. As both

L1ERC20TokenGateway and L2ERC20TokenGateway are upgradable, user funds might be

restored via the upgrade of the gateway on the same code version but with additional

initialization logic. The new initializer might mint the required amount of tokens on the L2 or

transfer tokens back to the user on the L1. Of course, such a procedure is an extreme measure

but might be used in case of a massive malfunction in the Arbitrum's bridge UI in case bridging

transactions would have been sent with a low base submission fee.

As it was mentioned, the L1ERC20TokenGateway and L2ERC20TokenGateway are

supposed to be used with the default Arbitrum's router gateway via official Arbitrum's bridging

UI. Such usage guarantees that maxSubmissionCost for outbound transfers will have the

correct value. In case of a standalone usage of the contract user, MUST follow the

recommendations of the Offchain Labs and MAKE SURE that passed maxSubmissionCost

has the correct value.

2.2 MAJOR

2.2.1 User may loose their funds if msg.value ,

maxGas_ or gasPriceBid_ is low

Description

L1ERC20TokenGateway.sol#L80-L82

Severity MAJOR

Status FIXED

https://developer.offchainlabs.com/docs/l1_l2_messages#important-note-about-base-submission-fee
https://github.com/lidofinance/lido-l2/blob/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/arbitrum/L1ERC20TokenGateway.sol#L80-L82

Report 8

The maxGas_ , gasPriceBid_ and msg.value values are not checked. If maxGas_ *

gasPriceBid_ is not enough the transaction won't be executed immediately. The same goes

for msg.value . And users will have to execute it themself or ask someone to do it. It may take

a lot of time for the non-tech-savvy user.

According to Arbitrum docs the created ticket expires in 7 days and if no one executes it the

funds would be lost:

If no gas is provided or the execution reverts, it will be placed in the L2 retry buffer, where any

user can re-execute for some fixed period (roughly one week).

Recommendation

Add a check as in L1GatewayRouter:

uint256 expectedEth = _maxSubmissionCost + (_maxGas * _gasPriceBid);

require(msg.value == expectedEth, "WRONG_ETH_VALUE");

You may also want to consider implementing a way to recover funds in case they are locked

because the fix above is not bulletproof.

Update

Lido's response

Fix: https://github.com/lidofinance/lido-l2/pull/5

The issue was fixed according to the provided recommendations. It should be noted that even if

the retryable ticket expires, the money still might be returned to the user via the contracts

upgrade. See the previous section for details.

2.3 WARNING

2.3.1 Not all the ERC20 tokens are supported

Description

According to your documentation (Arbitrum, Optimism) this implementation supports all ERC20

compatible tokens:

...implementation of the bridging of the ERC20 compatible tokens...

Severity WARNING

Status FIXED

https://developer.offchainlabs.com/docs/l1_l2_messages#ethereum-to-arbitrum-retryable-tickets
https://github.com/OffchainLabs/arbitrum/blob/master/packages/arb-bridge-peripherals/contracts/tokenbridge/ethereum/gateway/L1GatewayRouter.sol#L236
https://github.com/lidofinance/lido-l2/blob/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/arbitrum/README.md
https://github.com/lidofinance/lido-l2/tree/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/optimism

Report 9

But rebasing tokens, tokens with fee on transfer are not supported. Also some tokens with

callback on transfer (ERC777) or other peculiar tokens may not be supported because they has

additional logic not handled by ERC20Bridged .

Also your implementation require Arbitrum team to call setGateways if you want to use the

Router which may not be suitable for all the tokens.

Recommendation

Make sure you don't use this bridge with tokens mentioned above. Update the docs.

Update

Lido's response

Fix: https://github.com/lidofinance/lido-l2/pull/14

The bridges documentation was updated according to the provided recommendations.

2.4 INFO

2.4.1 Pragma is not locked

Description

In all the audited contracts pragma is not locked.

Contracts should be deployed with the same compiler version and flags that they have been

tested the most with. Locking the pragma helps ensure that contracts do not accidentally get

deployed using, for example, the latest compiler which may have higher risks of undiscovered

bugs. Contracts may also be deployed by others and the pragma indicates the compiler version

intended by the original authors. Also solc frequently releases new compiler versions. Using an

old version prevents access to new Solidity security checks.

Recommendation

Lock the pragma, e.g.

pragma solidity 0.8.13;

Severity INFO

Status FIXED

https://github.com/OffchainLabs/arbitrum/blob/master/packages/arb-bridge-peripherals/contracts/tokenbridge/ethereum/gateway/L1GatewayRouter.sol#L208-L214
https://github.com/OffchainLabs/arbitrum/blob/master/packages/arb-bridge-peripherals/contracts/tokenbridge/ethereum/gateway/L1GatewayRouter.sol#L208-L214

Report 10

Update

Lido's response

Fix: https://github.com/lidofinance/lido-l2/pull/6

The version of the contract was locked to version 0.8.10 . According to the list of the known

bugs in the different versions of the solidity: https://github.com/ethereum/solidity/blob/develop/

docs/bugs_by_version.json, this version is the best in terms of the number of known bugs (3 at

the moment) and the maturity (more than 6 months since the release).

2.4.2 Public function could be declared external

Description

public functions that are never called by the contract should be declared external to save gas.

BridgingManager.sol#L48-L50

function isInitialized() public view returns (bool) {

 return _loadState().isInitialized;

}

The same goes for transfer , approve , transferFrom in ERC20Core and

ERC20Bridged.bridgeMint .

Recommendation

Use the external attribute for functions never called from the contract.

Update

Lido's response

Fix: https://github.com/lidofinance/lido-l2/pull/15

In the new versions of the solidity, the visibility modifier does not affect the gas costs of the

method. In our case, gas costs stay the same also for older solidity versions because the method

has no reference types arguments. See details in the documentation: https://

docs.soliditylang.org/en/v0.8.10/types.html#reference-types

Despite of this, the visibility of the methods: transfer , approve , transferFrom in the

ERC20Core contract and bridgeMint in the ERC20Bridged contract were changed from

Severity INFO

Status FIXED

https://github.com/lidofinance/lido-l2/blob/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/BridgingManager.sol#L48-L50

Report 11

public to external because these methods are not supposed to be called by the inherited

contracts.

2.4.3 Import is not used

Description

IERC20Bridged.sol#L7-L11

import {IERC20Metadata} from "./IERC20Metadata.sol";

/// @author psirex

/// @notice Extends the ERC20 functionality that allows the bridge

to mint/burn tokens

interface IERC20Bridged is IERC20 {

Recommendation

Use the import, IERC20Bridged should extend IERC20Metadata

Update

Lido's response

Fix: https://github.com/lidofinance/lido-l2/pull/7

The IERC20Metadata interface was removed from the IERC20Bridged.sol file.

2.4.4 Modifier onlyAdmin may be misleading

Description

OssifiableProxy.sol#L93-L97

modifier onlyAdmin() {

 address admin = _getAdmin();

 if (admin != address(0) && msg.sender != admin) {

Severity INFO

Status FIXED

Severity INFO

Status FIXED

https://github.com/lidofinance/lido-l2/blob/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/token/interfaces/IERC20Bridged.sol#L7-L11
https://github.com/lidofinance/lido-l2/blob/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/proxy/OssifiableProxy.sol#L93-L97

Report 12

 revert ErrorNotAdmin();

 }

Modifier name suggests that only admin can use a function with it. But if a proxy is ossified

anyone can use it. It's not an issue right now because whenNotOssified is added everywhere.

But it may lead to errors in the future because the behavior may not be expected.

Recommendation

Merge onlyAdmin and whenNotOssified modifiers. Only check for msg.sender !=

admin .

Update

Lido's response

Fix: https://github.com/lidofinance/lido-l2/pull/8

According to the recommendations, the whenOssified() modifier was removed, and its logic

was added to the onlyAdmin() modifier.

2.4.5 Redundant checks

Description

L1ERC20TokenBridge and L2ERC20TokenBridge support only one pair of tokens. There is

no need to pass l1token and l2token as arguments and then check

onlySupportedL1Token , onlySupportedL2Token . E.g. L1ERC20TokenBridge.sol#L44-

L55

 function depositERC20(

 address l1Token_,

 address l2Token_,

 uint256 amount_,

 uint32 l2Gas_,

 bytes calldata data_

)

 external

 whenDepositsEnabled

 onlySupportedL1Token(l1Token_)

Severity INFO

Status NO_ISSUE

https://github.com/lidofinance/lido-l2/blob/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/optimism/L1ERC20TokenBridge.sol#L44-L55
https://github.com/lidofinance/lido-l2/blob/83ad65669c25dfa76e793f46b2e54f12c8fee0af/contracts/optimism/L1ERC20TokenBridge.sol#L44-L55

Report 13

 onlySupportedL2Token(l2Token_)

 {

Recommendation

Remove redundant checks to save gas.

Update

Lido's response

The onlySupportedL1Token and onlySupportedL2Token modifiers are required to

prevent unintended usage of the bridge with the wrong pair of tokens. Also, the l1Token and

l2Token arguments can't be removed because it violates the required interface to be

compatible with Optimism's bridging UI.

2.4.6 Transaction censoring is possible

Description

If DEPOSITS_ENABLER_ROLE and DEPOSITS_DISABLER_ROLE or

WITHDRAWALS_ENABLER_ROLE and WITHDRAWALS_DISABLER_ROLE are the same entity

it's possible to sandwich transactions disallowing withdrawals/deposits for some users which

may not be expected.

Recommendation

This roles should not be given to entities that may have incentives to censoring.

Update

Lido's response

The full set of management roles will be granted only to the Lido DAO represented by the

Aragon Agent. Additionally, DEPOSITS_DISABLER_ROLE and

WITHDRAWALS_DISABLER_ROLE might be granted to the emergency multisig for fast bridge

disabling in case of a bug or vulnerability.

Severity INFO

Status ACKNOWLEDGED

Conclusion 14

3 Conclusion

The following table contains the total number of issues that were found during audit:

As stated in each particular issue, all issues identified have been correctly fixed or acknowledged

by the client, so contracts are assumed as secure to use according to our security criteria and

ready to deploy to mainnet. One minor info issue was marked as "no issue" after discussing with

the Lido's team.

Level Amount

CRITICAL 1

MAJOR 1

WARNING 1

INFO 6

Total 9

About Oxorio 15

4 About Oxorio

Oxorio is a young but rapidly growing audit and consulting company in the field of the blockchain

industry, providing consulting and security audits for organizations from all over the world.

Oxorio has participated in multiple blockchain projects where smart contract systems were

designed and deployed by the company.

Oxorio is the creator, maintainer, and major contributor of several blockchain projects and

employs more than 5 blockchain specialists to analyze and develop smart contracts.

Contacts:

oxor.io

ping@oxor.io

github

linkedin

•

•

•

•

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/oxor

	Lido L2 Smart Contracts Security Audit Report
	Introduction
	Disclaimer
	Security Assessment Methodology
	Severity Level Reference
	Status Level Reference

	Project overview
	Audit Scope
	Assumptions

	Report
	CRITICAL
	User looses their funds if maxSubmissionCost is low
	Description
	Recommendation
	Update
	Lido's response

	MAJOR
	User may loose their funds if msg.value, maxGas_ or gasPriceBid_ is low
	Description
	Recommendation
	Update
	Lido's response

	WARNING
	Not all the ERC20 tokens are supported
	Description
	Recommendation
	Update
	Lido's response

	INFO
	Pragma is not locked
	Description
	Recommendation
	Update
	Lido's response

	Public function could be declared external
	Description
	Recommendation
	Update
	Lido's response

	Import is not used
	Description
	Recommendation
	Update
	Lido's response

	Modifier onlyAdmin may be misleading
	Description
	Recommendation
	Update
	Lido's response

	Redundant checks
	Description
	Recommendation
	Update
	Lido's response

	Transaction censoring is possible
	Description
	Recommendation
	Update
	Lido's response

	Conclusion
	About Oxorio

