
DECEMBER 13, 2024

LAUNCHNODES

LIDO IMPACT

STAKING

SECURITY

AUDIT REPORT

EXECUTIVE

SUMMARY1

EXECUTIVE SUMMARY 3

1.1 EXECUTIVE SUMMARY

This document presents the smart contracts security audit conducted by Oxorio for

Launchnodes Lido Impact Staking.

Launchnodes provides secure, scalable Ethereum solo staking with pre-synced Geth,

Beacon, and Validator nodes in AWS. It simplifies running RPC nodes and offers consultancy

services through AWS Marketplace, supporting clients with solo staking and DeFi

development.

Lido Impact Staking (LIS) is an innovative platform that allows Ethereum stakers to allocate a

portion of their staking rewards to social impact initiatives. Participants can donate part of

their returns to approved organizations for a set period while retaining their original capital.

LIS operates within the Lido ecosystem, leveraging its staking infrastructure to enable

seamless participation in social impact projects.

The audit process involved a comprehensive approach, including manual code review,

automated analysis, and extensive testing and simulations of the smart contracts to assess

the project’s security and functionality. The audit covered a total of 8 smart contracts,

encompassing 616 lines of code. The codebase was thoroughly examined, with the audit

team collaborating closely with Launchnodes and referencing the provided documentation

to address any questions regarding the expected behavior. For an in-depth explanation of

used the smart contract security audit methodology, please refer to the Security

Assessment Methodology section of this document.

Throughout the audit, a collaborative approach was maintained with Launchnodes to

address all concerns identified within the audit’s scope. Each issue has been either resolved

or formally acknowledged by Lauchnodes , contributing to the robustness of the project.

https://launchnodes.gitbook.io/lido-impact-staking-lis/

EXECUTIVE SUMMARY 4

1.2 SUMMARY Of fINDINGS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Detailed technical information on the audit findings, along with our recommendations for

addressing them, is provided in the Findings Report section for further reference.

All identified issues have been addressed, with Launchnodes fixing them or formally

acknowledging their status.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 6 0 6 0 0

MAJOR 5 0 5 0 0

WARNING 12 0 11 1 0

INFO 28 0 27 1 0

TOTAL 51 0 49 2 0

AUDIT

OVERVIEW2

6

CONTENTS

1. EXECUTIVE SUMMARY ... 2

1.1. EXECUTIVE SUMMARY .. 3

1.2. SUMMARY OF FINDINGS .. 4

2. AUDIT OVERVIEW ... 5

2.1. DISCLAIMER ... 9

2.2. PROJECT BRIEF ... 10

2.3. PROJECT TIMELINE .. 11

2.4. AUDITED FILES ... 12

2.5. PROJECT OVERVIEW .. 13

2.6. CODEBASE QUALITY ASSESSMENT ... 14

2.7. FINDINGS BREAKDOWN BY FILE ... 16

2.8. CONCLUSION .. 17

3. FINDINGS REPORT ... 18

3.1. CRITICAL ... 19

C-01 The setImplementetion function is executed without authorization in NGOLisFactory 19

C-02 Withdrawal of more ETH from the protocol than returned by Lido in NGOLis 20

C-03 Decrease in stETH balance due to slashing or penalties is not accounted for in NGOLis 22

C-04 Rounding during division leads to accumulation of undistributed rewards on the contract in

NGOLis ... 24

C-05 Contract lock risk on initial stake in NGOLis ... 26

C-06 Unrestricted withdrawal of small stETH/wstETH amounts in NGOLis 28

3.2. MAJOR .. 30

M-01 Underflow when attempting to withdraw asset from prevRewards in NGOLis 30

M-02 Incorrect update of lastNGOBalance in NGOLis .. 32

M-03 Risk of Zero Calculation for Low _ratio and _ngoAssets in NGOLis 34

7

M-04 Underflow occurring during validator slashing events in NGOLis 36

M-05 Unwithdrawable balance after withdrawal in NGOLis ... 38

3.3. WARNING ... 42

W-01 Possible to pass a zero _amount in NGOLis .. 42

W-02 Inconsistency in the calculation of userTotalShareWithNgoReward and rewardToNgo in

NGOLis ... 43

W-03 User does not receive rewards for staking when shares == 0 in NGOLis 45

W-04 Possible to receive a zero amount of shares when converting non-zero assets in NGOLis ... 46

W-05 Proxy creation uses ERC1967Proxy instead of NGOLisProxy in NGOLisFactory 48

W-06 Function __ReentrancyGuard_init is not called during initialization in NGOLis 49

W-07 Insufficient validation of the size of _amount for withdrawal requests in NGOLis 50

W-08 Users cannot withdraw stuck funds from the contract in NGOLis 52

W-09 Incorrect value in the WithdrawClaimed event in NGOLis .. 54

W-10 StakeInfo is not updated during withdraw operations in NGOLis 56

W-11 Equality of minimum values for different tokens wstEth and stEth in NGOLis 58

W-12 Zero ratio after rounding during division in NGOLis .. 60

3.4. INFO .. 61

I-01 Delay between reward distributions changes after contract initialization in NGOLis 61

I-02 Setting msg.sender instead of owner in the mapping ownerToNgo in NGOLisFactory 63

I-03 Inconsistency in error notification methods in NGOLis .. 64

I-04 No _disableInitializers call in the constructor in NGOLis .. 65

I-05 Redundant storage of the totalAssets value in NGOLis .. 66

I-06 Suboptimal handling of storage variables in NGOLis ... 67

I-07 No parameter validation in NGOLis .. 68

I-08 Interface not used in IAccountOracle.sol .. 69

I-09 Unused variable _prevRewards in NGOLis .. 70

I-10 Redundant check for unsigned value being negative in NGOLis ... 71

I-11 Balance calculation before checking for stake existence in NGOLis 72

I-12 Insufficient validation in the case of the very first stake in NGOLis 74

I-13 Event name in the specification is misleading in NGOLisFactory .. 76

8

I-14 Similar code in identical functions in NGOLis .. 77

I-15 Transfer of zero _fee is possible in NGOLis ... 78

I-16 No setter parameter validation in NGOLis .. 80

I-17 Simultaneous use of uint and uint256 types ... 81

I-18 Redundant increment operation in NGOLis .. 82

I-19 Suboptimal computation of user balance in NGOLis ... 83

I-20 Missing functionality for mistaken tokens and ETH withdrawal in NGOLis 84

I-21 Unused contracts in NGOLis.sol, NGOLisFactory.sol .. 86

I-22 Unused error in NGOLis .. 87

I-23 Misleading variable name wstAmount instead of stAmount in NGOLis 88

I-24 Incorrect event parameter value wstEth instead of stEth in NGOLis 89

I-25 Inconsistent state variable naming style in NGOLis, NGOLisFactory 90

I-26 Missing event emissions in setters in NGOLis, NGOLisFactory ... 92

I-27 Missing parameter validation in NGOLis, NGOLisFactory ... 94

I-28 Setting msg.sender as owner during deployment in NGOLisFactory 95

4. APPENDIX ... 96

4.1. SECURITY ASSESSMENT METHODOLOGY .. 97

4.2. CODEBASE QUALITY ASSESSMENT REFERENCE .. 99

Rating Criteria ... 100

4.3. FINDINGS CLASSIFICATION REFERENCE ... 101

Severity Level Reference .. 101

Status Level Reference ... 101

4.4. ABOUT OXORIO ... 103

AUDIT OVERVIEW 9

2.1 DISCLAIMER

At the request of the client, Oxorio consents to the public release of this audit report. The

information contained herein is provided "as is" without any representations or warranties

of any kind. Oxorio disclaims all liability for any damages arising from or related to the use

of this audit report. Oxorio retains copyright over the contents of this report.

This report is based on the scope of materials and documentation provided to Oxorio for

the security audit as detailed in the Executive Summary and Audited Files sections. The

findings presented in this report may not encompass all potential vulnerabilities. Oxorio

delivers this report and its findings on an as-is basis, and any reliance on this report is

undertaken at the user’s sole risk. It is important to recognize that blockchain technology

remains in a developmental stage and is subject to inherent risks and flaws.

This audit does not extend beyond the programming language of smart contracts to include

areas such as the compiler layer or other components that may introduce security risks.

Consequently, this report should not be interpreted as an endorsement of any project or

team, nor does it guarantee the security of the project under review.

THE CONTENT OF THIS REPORT, INCLUDING ITS ACCESS AND/OR USE, AS WELL AS ANY

ASSOCIATED SERVICES OR MATERIALS, MUST NOT BE CONSIDERED OR RELIED UPON AS

FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER PROFESSIONAL ADVICE.

Third parties should not rely on this report for making any decisions, including the purchase

or sale of any product, service, or asset. Oxorio expressly disclaims any liability related to

the report, its contents, and any associated services, including, but not limited to, implied

warranties of merchantability, fitness for a particular purpose, and non-infringement.

Oxorio does not warrant, endorse, or take responsibility for any product or service

referenced or linked within this report.

For any decisions related to financial, legal, regulatory, or other professional advice, users

are strongly encouraged to consult with qualified professionals.

AUDIT OVERVIEW 10

2.2 PROjECT BRIEf

Title Description

Client Launchnodes

Project name Lido Impact Staking

Category Liquid Staking

Website https://impactstake.com/

Documentation https://launchnodes.gitbook.io/lido-impact-staking-lis/

Repository https://github.com/Launchnodes-Ltd/LIS/

Initial Commit 1328366ebc49fd40c93a57622678d655bec42ab5

Reaudited Commit 1 b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

Reaudited Commit 2 e862675353e08d83265337d1944d5d2ca6b6be31

Reaudited Commit 3 51f49e43dec8b70f71fb2016c442ff05b198a35b

Final commit 51f49e43dec8b70f71fb2016c442ff05b198a35b

Platform L1,L2

Languages Solidity

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project Manager Nataly Demidova - nataly@oxor.io

https://impactstake.com/
https://launchnodes.gitbook.io/lido-impact-staking-lis/
https://github.com/Launchnodes-Ltd/LIS/
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/blob/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/blob/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/blob/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/blob/51f49e43dec8b70f71fb2016c442ff05b198a35b
mailto:am@oxor.io
mailto:nataly@oxor.io

AUDIT OVERVIEW 11

2.3 PROjECT TIMELINE

The key events and milestones of the project are outlined below.

Date Event

August 8, 2024 Client engaged Oxorio requesting an audit.

September 18, 2024 The audit team initiated work on the project.

September 24, 2024 Submission of the comprehensive audit report.

October 25, 2024 Client engaged Oxorio requesting an re-audit #1.

October 28, 2024 The audit team initiated work on the re-audit #1.

October 30, 2024 Submission of the comprehensive audit report for re-audit #1.

November 20, 2024 Client engaged Oxorio requesting an re-audit #2.

November 29, 2024 The audit team initiated work on the re-audit #2.

December 2, 2024 Submission of the comprehensive audit report for re-audit #2.

December 6, 2024 Client engaged Oxorio requesting an re-audit #3.

December 10, 2024 The audit team initiated work on the re-audit #3.

December 13, 2024 Submission of the final audit report incorporating client’s verified fixes.

AUDIT OVERVIEW 12

2.4 AUDITED fILES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that

estimates logical depth and decision points like loops and conditional branches) by the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

File Lines Blanks Comments Code Complexity

1 contracts/interfaces/IAccountOracle.sol 27 2 1 24 0

2 contracts/interfaces/IERC20.sol 11 2 5 4 0

3 contracts/interfaces/ILido.sol 21 5 1 15 0

4 contracts/interfaces/IWithdrawalQueue.sol 36 8 1 27 0

5 contracts/libs/ERC6551BytecodeLib.sol 15 1 1 13 0

6 contracts/NGOLis.sol 887 137 301 449 8

7 contracts/NGOLisFactory.sol 138 13 50 75 0

8 contracts/NGOLisProxy.sol 14 4 1 9 0

Total 1149 172 361 616 6

https://github.com/boyter/scc
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/interfaces/IAccountOracle.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/interfaces/IERC20.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/interfaces/ILido.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/interfaces/IWithdrawalQueue.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/libs/ERC6551BytecodeLib.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLisFactory.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLisProxy.sol
https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 13

2.5 PROjECT OVERVIEW

Lido Impact Staking (LIS) integrates with Lido’s Ethereum liquid staking infrastructure to

create a decentralized platform that funds social impact initiatives using staking returns. LIS

leverages Ethereum staking as a sustainable, long-term financing tool, allowing participants

to donate a portion of their staking rewards to charitable organizations while retaining their

initial capital. The platform is designed to support causes such as poverty alleviation, climate

change mitigation, and other social impact efforts, all within a transparent and measurable

data-rich context.

LIS operates by connecting to Lido’s existing Ethereum liquid staking engine. Stakers can

deposit ETH or stETH, and a portion of their staking rewards is diverted to support approved

social impact organizations. The core staking and reward distribution is handled by Lido’s

decentralized network of node operators, ensuring security and scalability.

LIS uses two primary smart contract modules:

User Module: This contract allows users to stake their ETH or stETH, check their reward

balances, and withdraw their initial capital or staking rewards at any time. Users can

specify the percentage of their rewards they wish to donate and the duration of their

participation in the social impact marketplace.

Organization Module: Social impact organizations are onboarded through this contract,

which enables them to receive donations. Approved organizations can withdraw

donations on a rolling basis (every 24 hours) once they are credited. The contract also

manages the addition or removal of organizations based on compliance with the

platform’s standards.

LIS creates a Social Impact Marketplace (SIM) where credible organizations focused on social

impact, such as poverty reduction, climate action, and education, can apply to receive

donations. Organizations must demonstrate a clear, data-driven impact model and present

financial projections that account for the variability in Ethereum staking returns.

Users choose a percentage of their staking rewards to donate for a specified period. These

rewards are compounded for the user while a fraction is sent to the designated

organizations. LIS ensures that donations are made available to these organizations every

24 hours, providing a steady stream of funding. At the end of the donation period, users

retain their original staked capital, underscoring the non-speculative nature of the model.

LIS smart contracts manage the staking, reward distribution, and donation mechanisms,

with a focus on minimizing risk and ensuring smooth, transparent operations. The audit

process focused on the security of the staking flows, the integrity of the donation

mechanism, and the accurate tracking and distribution of funds to social impact

organizations.

AUDIT OVERVIEW 14

2.6 CODEBASE QUALITY

ASSESSMENT

The Codebase Quality Assessment table offers a comprehensive assessment of various

code metrics, as evaluated by our team during the audit, to gauge the overall quality and

maturity of the project’s codebase. By evaluating factors such as complexity, documentation

and testing coverage to best practices, this table highlights areas where the project excels

and identifies potential improvement opportunities. Each metric receives an individual

rating, offering a clear snapshot of the project's current state, guiding prioritization for

refactoring efforts, and providing insights into its maintainability, security, and scalability.

For a detailed description of the categories and ratings, see the Codebase Quality

Assessment Reference section.

Category Assessment Result

Access Control

The project uses the onlyOwner modifier for access

control. The issues with the onlyOwner function have been

resolved

Excellent

Arithmetic

Potential issues with underflow were found in the code. It

is also important to pay attention to the precision of

calculations and issue C-04 , C-05 , M-02 . These issues

have been resolved.

Good

Complexity
The code is characterized by minimal redundancy, high

readability, and a well-defined architecture.
Excellent

Data Validation The code includes appropriate validations and checks. Excellent

Decentralization

The project does not incorporate a decentralized approach

to management, and therefore, the metric is not applicable

in this context.

Not

Applicable

Documentation Excellent

External

Dependencies

The project uses wstETH to minimize the impact of rebase

tokens like stETH . However, issue M-03 highlights a

problem with the timeliness of data from the NGO pool. This

issue with has been resolved.

Excellent

Error Handling The project handles exceptional situations. Excellent

Logging and

Monitoring

The project exhibits excellent logging capabilities, recording

all important events within the system. This comprehensive

logging framework enables the effective use of third-party

monitoring services such as Tenderly or Forta , which

facilitate real-time data analysis and enhance the ability to

track system performance and security incidents accurately.

Excellent

AUDIT OVERVIEW 15

Category Assessment Result

Low-Level Calls
All low-level calls within the project are implemented

correctly and meet expectations for security and efficiency.
Excellent

Testing and

Verification

Test coverage can be improved, as the current testing

volume was not cover all possible scenarios, leading to

some oversights and identified issues. It is recommended to

expand the coverage for more accurate detection of

potential vulnerabilities and to increase system stability.

Good

AUDIT OVERVIEW 16

2.7 fINDINGS BREAKDOWN BY

fILE

This table provides an overview of the findings across the audited files, categorized by

severity level. It serves as a useful tool for identifying areas that may require attention,

helping to prioritize remediation efforts, and provides a clear summary of the audit results.

File TOTAL CRITICAL MAJOR WARNING INFO

contracts/NGOLis.sol 20 3 1 7 9

contracts/NGOLis.sol 13 2 3 2 6

contracts/NGOLis.sol 10 0 1 2 7

contracts/NGOLisFactory.sol 5 0 0 0 5

contracts/NGOLisFactory.sol 4 1 0 1 2

contracts/interfaces/IAccountOracle.sol 1 0 0 0 1

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLisFactory.sol
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/interfaces/IAccountOracle.sol

AUDIT OVERVIEW 17

2.8 CONCLUSION

A comprehensive audit was conducted on 8 smart contracts, revealing 4 critical and 1 major

issues, along with numerous warnings and informational notes. The audit uncovered critical

vulnerabilities and security risks, including unauthorized access to key functions, incorrect

withdrawal logic, handling of slashing and penalties, and potential underflow errors. Issues

related to rounding, gas inefficiencies, and lack of validation were also found.

The proposed changes are focused on strengthening access control mechanisms, ensuring

proper handling of slashing and penalties, improving withdrawal logic to prevent fund

mismanagement, and addressing rounding and underflow vulnerabilities. Additionally, we

recommend code optimization for better gas efficiency and enhanced validation to improve

the overall security, functionality, and reliability of the smart contracts. These

recommendations are based on adherence to industry best practices, ensuring that these

aspects are enhanced to improve the overall security and reliability of the smart contracts.

We strongly advise to address the identified issues to mitigate potential risks, improve the

quality of the codebase, and ensure the contracts meet the highest security standards.

After the initial audit a comprehensive re-audit #1 was conducted on 8 smart contracts,

revealing 2 critical and 3 major issues, along with numerous warnings and informational

notes. The re-audit uncovered critical vulnerabilities and security risks, including the ability

to restrict operations on the contract, asset value imbalance and potential underflow errors.

Issues related to rounding, gas inefficiencies, and lack of validation were also found.

After the re-audit #1, a second re-audit #2 was conducted, revealing additional 2 major

issues, alongside 4 warnings and 16 informational notes. The re-audit highlighted issues

with minimal withdrawal amounts leading to locked balances, improper validation between

different token types, and potential mapping inaccuracies during ownership transfers.

Additionally, concerns such as rounding errors, lack of parameter validation, and missing

events for critical operations were identified. These findings underline the need for

implementing robust validation mechanisms, event logging, and enhanced security

practices to mitigate risks effectively.

Upon completion of the re-audit #3, all identified findings have been remediated.

As a result, 51f49e43dec8b70f71fb2016c442ff05b198a35b, operates as intended within the

defined scope, based on the information and code provided at the time of evaluation. The

robustness of the codebase has been significantly improved, meeting the necessary security

and functionality requirements established for this audit.

Moreover, we advise increasing the test coverage of the codebase. Comprehensive testing is

essential to uncover edge cases and ensure that the smart contracts perform as expected

under various conditions. Enhancing test coverage will not only improve the reliability of the

contracts but also contribute to the overall security of the project.

https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS

REPORT3

fINDINGS REPORT 19

3.1 CRITICAL

Location

Description

In the setImplementetion function of the NGOLisFactory contract, the implementation of

the proxy is set. The proxy itself is created in the createNGO function, only by the owner.

However, the setImplementetion function can be called by anyone.

Thus, an attacker can frontrun the proxy creation transaction by calling the

setImplementetion function beforehand, setting a different implementation address.

Recommendation

We recommend adding authorization to the setImplementetion function to ensure that

only a trusted address (e.g., the owner) can change the implementation.

Update

Client's response

Added modifier onlyOwner to function setImplementetion . From now onlyOwner can use

function setImplementetion .

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

C-01
The setImplementetion function is executed without

authorization in NGOLisFactory

Severity CRITICAL

Status • FIXED

File Location Line

 contract NGOLisFactory > function setImplementetion 135NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLisFactory.sol#L135
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 20

Location

Description

In the function claimWithdrawal of contract NGOLis , the user withdraws all ETH that was

received after the claim in Lido:

withdrawalSC.claimWithdrawal(_requestId);

payable(msg.sender).transfer(status.amountOfStETH);

The amount of ETH withdrawn is equal to status.amountOfStETH , which is the amount of

ETH requested for withdrawal in the request. However, according to the documentation, the

amount specified in the withdrawal request may not equal the actual claim amount:

Why is the claimable amount different from my requested amount?

The amount you can claim may differ from your initial request due to slashing and

penalties. For these reasons, the total claimable reward amount could be lower than the

amount withdrawn.

This leads to the situation where, upon calling the transfer function, the user may receive

more ETH than what Lido returned if there is excess ETH in the contract. If there is no

excess ETH, then the claimWithdrawal function will revert with an error.

Additionally, it should be noted that instead of using the .transfer() method for sending

ETH, it is recommended to use .call() .

C-02
Withdrawal of more ETH from the protocol than

returned by Lido in NGOLis

Severity CRITICAL

Status • FIXED

File Location Line

 contract NGOLis > function claimWithdrawal 634NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L634
https://help.lido.fi/en/articles/7858292-faq-ethereum-withdrawals
https://solidity-by-example.org/sending-ether/

fINDINGS REPORT 21

Recommendation

We recommend considering the use of the function withdrawalSC.claimWithdrawalsTo

instead of withdrawalSC.claimWithdrawal , and directly passing the ETH recipient as one

of the arguments. This will simplify the logic and eliminate the need to use the transfer

function.

Update

Client's response

Removed the transfer function and changed the call function

withdrawalSC . claimWithdrawal to withdrawalSC.claimWithdrawalsTo .

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 22

Location

Description

In the contract NGOLis , a rebasing token stETH is used, the balance of which may decrease

due to slashing and penalties imposed on Ethereum validators. Since the current balance is

obtained directly from lidoSC.balanceOf(address(this)) , this may lead to errors when

working with it. For example:

1) In the getUserBalance function, in the event of a decrease in the overall balance

currentBalance , the calculated user balance may be less than the stake amount. In such a

case, the function will return the user's balance equal to the stake:

uint256 userTotalShareWithNgoReward = shares[_user][_id].mulDiv(

 currentBalance,

 totalShares

);

if (userTotalShareWithNgoReward < stakedInfo.amount) {

 return stakedInfo.amount;

}

It may happen that the overall balance currentBalance is less than the total amount of

tokens staked by users. Thus, the protocol will incur losses.

At the same time, the loss will not be socialized among the protocol users. That is, the user

who first creates a withdrawal request under such conditions will exit the protocol with their

stake. Meanwhile, users who create requests last will be unable to withdraw anything.

2) When calculating _rewardsForToday in the handleNGOShareDistribution function:

C-03
Decrease in stETH balance due to slashing or penalties

is not accounted for in NGOLis

Severity CRITICAL

Status • FIXED

File Location Line

 contract NGOLis 19NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L19

fINDINGS REPORT 23

uint256 _rewardsForToday = currentBalance - stakedBalance - prevRewards;

currentBalance may become less than stakedBalance at a certain point, leading to

underflow and failure in the distribution of rewards.

3) In the withdrawCalculation function, when currentBalance decreases, the calculated

value amountInShares may exceed the total amount of all shares for the respective stake,

leading to underflow and the inability to create a withdrawal request or claim stETH :

uint256 amountInShares = _amount.mulDiv(

 totalShares + 1,

 currentBalance

);

if (_amount == userBalance) {

 shares[msg.sender][_id] = 0;

} else {

 shares[msg.sender][_id] -= amountInShares;

}

Recommendation

We recommend considering the use of a non-rebasing token wstETH instead of the rebasing

token stETH to avoid complications related to fluctuating balances.

Update

Client's response

Changed stETH token for non-rebasing wstETH token for usage on smart contract. WstETH

is used to calculate NGO and users’ balances. We’ve enabled an ability to stake and withdraw

using wstETH , while stakes using ETH and stETH are being converted to wstETH .

Withdrawals are also converted to stETH or ETH if requests are made to withdraw in that

form.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://docs.lido.fi/guides/lido-tokens-integration-guide/#steth-vs-wsteth
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 24

Location

Description

In the mentioned locations, values are calculated using division without the aid of the

mulDiv library. Thus, during calculations, rounding occurs, which may result in incorrect

final values. For example:

1) In the stake function, the calculation of totalShareToday is performed:

stakedBalance += assets;

totalShareToday += (assets * (_ngoPercent)) / PERCENT_DIVIDER;

However, in the case of a small assets value, the expression

(assets * (_ngoPercent)) / PERCENT_DIVIDER may equal zero. This will lead to the

accumulation of undistributed rewards in prevRewards .

2) In the handleNGOShareDistribution function, calculations for shareToNgo and

_lisFee are performed. Similarly, with sufficiently small values of totalShareToday and

_rewardsForToday , the results of these calculations may return 0 due to rounding during

division, leading to underreported fees and rewards for NGO and the accumulation of

undistributed rewards in prevRewards on the contract:

uint256 shareToNgo = (totalShareToday * _rewardsForToday) /

 stakedBalance;

uint256 _lisFee = (shareToNgo * LIS_FEE) / PERCENT_DIVIDER;

C-04
Rounding during division leads to accumulation of

undistributed rewards on the contract in NGOLis

Severity CRITICAL

Status • FIXED

File Location Line

 contract NGOLis > function stake 460

 contract NGOLis > function handleNGOShareDistribution 542

 contract NGOLis > function handleNGOShareDistribution 545

NGOLis.sol

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L460
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L542
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L545

fINDINGS REPORT 25

Recommendation

We recommend considering the use of the mulDiv library to avoid significant rounding

errors when dividing small values.

Update

Client's response

Removed all dividers in SC and started using mulDiv instead.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 26

Location

Description

In the mentioned locations, a portion of the asset provided by the user, which is allocated to

the NGO, is calculated as follows:

uint256 _ngoAssets = userAmount.mulDiv(_ngoPercent, PERCENT_DIVIDER);

However, there is no check for the minimum stake amount. This allows the user to specify a

stake so small that the calculated _ngoAssets becomes zero, for instance, with the

following variable values:

userAmount = 10

_ngoPercent = 100

PERCENT_DIVIDER = 10000

If such a small asset is set in the case of the very first stake, where id == 1 , this leads to

setting totalNGOAssets and totalNGOShares to zero permanently. In this case, no further

stakes can be made in the protocol, as for id > 1 , a division-by-zero error will occur when

calculating _ngoShare :

if (id == 1) {

 _ngoShare = _ngoAssets;

} else {

 _ngoShare = _ngoAssets.mulDiv(totalNGOShares, totalNGOAssets);

}

C-05 Contract lock risk on initial stake in NGOLis

Severity CRITICAL

Status • FIXED

File Location Line

 contract NGOLis > function stake 444

 contract NGOLis > function stakeStEth 500

 contract NGOLis > function stakeWStEth 553

NGOLis.sol

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L444
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L500
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L553

fINDINGS REPORT 27

totalNGOAssets += _ngoAssets;

totalNGOShares += _ngoShare;

Recommendation

We recommend refactoring the code to eliminate the possibility of rounding to zero during

division. To achieve this, it is advisable to set a minimum stake size that, even at the lowest

_ngoPercent , would not result in _ngoAssets being calculated as zero.

Update

Client's response

Added modifier validAmount and set up a minimum amount possible to stake:

uint16 constant MIN_AMOUNT = 1000

modifier validAmount(uint256 amount) {

 if (amount < MIN_AMOUNT) {

 revert InvalidStakeAmount();

 }

 _;

 }

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 28

Location

Description

In the withdrawCalculation function of the NGOLis contract, it is possible to pass a very

small _amountWstETH value when the user’s _totalUserWstETH stake is very large. In this

case, _ratio could equal zero due to rounding during division:

uint256 _ratio = _amountWstETH.mulDiv(DIVIDER, _totalUserWstETH);

For example, with the following variable values:

_amountWstETH = 99_999

DIVIDER = 10**18

_totalUserWstETH = 100_000 * 10**18

This results in the balance variables (totalNGOAssets , totalNGOShares , ngoShares , etc.)

not being updated on the contract, while the requested amount _amountWstETH is

successfully withdrawn. In this case, we get a mismatch between the assets stored in the

contract and the accounting balances in the contract. This means that at some point, a

portion of users will not have enough assets to withdraw their stake.

Recommendation

We recommend checking that _ratio is not equal to zero after calculation to prevent

unrestricted withdrawal of funds from the contract in the claimWithdrawInStEth and

claimWithdrawInWStEth functions.

C-06
Unrestricted withdrawal of small stETH / wstETH

amounts in NGOLis

Severity CRITICAL

Status • FIXED

File Location Line

 contract NGOLis > function withdrawCalculation 786NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L786

fINDINGS REPORT 29

Update

Client's response

Added a check for ratio == 0 . If a small amount is passed and it occurs that ratio cannot be

calculated (due to rounding in Solidity equals to 0) transaction is being reverted. It resolves

issue with cases when totalNGOassets , userAssets weren’t updated, but had to.

if (_ratio == 0) {

 revert InvalidWithdrawAmount();

 }

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 30

3.2 MAjOR

Location

Description

In the function withdrawCalculation of contract NGOLis , when _amount <= rewards , the

withdrawal occurs from prevRewards :

if (_amount > rewards) {

 stakeInfo.amount -= (_amount - rewards);

 stakedBalance -= (_amount - rewards);

 prevRewards = prevRewards > rewards ? prevRewards - rewards : 0;

} else {

 prevRewards -= _amount;

}

At this point, _amount can be greater than prevRewards . For example, immediately after

deploying the project, before the first distribution of rewards, prevRewards is equal to 0 ,

but the user may have already staked their assets, accumulated rewards, and wish to

withdraw them.

This leads to a situation where, if _amount is small relative to the accumulated rewards,

_amount can simultaneously be greater than prevRewards , resulting in an underflow.

M-01
Underflow when attempting to withdraw asset from pr

evRewards in NGOLis

Severity MAJOR

Status • FIXED

File Location Line

 contract NGOLis > function withdrawCalculation 776NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L776

fINDINGS REPORT 31

Recommendation

We recommend refactoring the accounting of accumulated rewards in prevRewards during

the withdrawal calculations in the function withdrawCalculation to avoid underflow.

Update

Client's response

Changed calculations inside smart contract based on specifications which were provided.

Logic of shares for users and NGO was implemented, so the function

handleNGOdistribution takes into account amount and shares of wsETH for NGO

(prevRewards variable is not used anymore).

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 32

Location

Description

In the mentioned locations, there is an incorrect update of the lastNGOBalance parameter,

resulting in inaccurate calculation of the NGO income. This occurs due to the following

reasons:

lastNGOBalance records how many StETH tokens correspond to NGO , but StETH is

a rebasing token, and its balance changes over time with each report from Lido.

During stake and withdraw operations, the balance of StETH is altered, but this

change occurs relative to the current state of the NGO pool.

Updating lastNGOBalance resets reward accruals, but it does so based on the

current parameters of lastNGOBalance , resulting in previous accruals and the state

of lastNGOBalance being unaccounted for.

Recommendation

We recommend replacing the increment and decrement of lastNGOBalance to amount of

stake in stakeStEth , stakeWStEth , and withdrawCalculation functions by distributing

the accrued rewards and setting lastNGOBalance to reflect the current state of the pool

like in handleNGOShareDistribution .

Update

Client's response

Have made a new function pendingRewardsCalculation() that calculates the amount of

tokens (in WStETH tokens) which should be distributed to NGO with each

handleNGODistribution handle. It’s used in stake , withdrawal and

M-02 Incorrect update of lastNGOBalance in NGOLis

Severity MAJOR

Status • FIXED

File Location Line

 contract NGOLis > function stake 470

 contract NGOLis > function stakeStEth 529

 contract NGOLis > function stakeWStEth 584

 contract NGOLis > function withdrawCalculation 818

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

1.

2.

3.

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L470
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L529
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L584
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L818

fINDINGS REPORT 33

handleNGOdistribution functions. It helps to store tokens which are meant to be

transferred to an NGO and make sure it won’t be withdrawn by any user.

With this new logic, we have changed the calculation of user balance in the

getUserBalance function. Portion of tokens that is meant for the user, but its reward goes

to the NGO (totalNGOAssets) is being calculated based on lastNGOBalance , as

lastNGOBalance represents an amount without any reward and it is always accurate

(taking into account each new stake or withdrawal)

function getUserBalance(

 address _user,

 uint256 _id

) public view returns (uint256 userBalance) {

 uint256 _ngoShare = ngoShares[_user][_id];

 uint256 lastNGOBalanceToWsEth = wstETHSC.getWstETHByStETH(

 lastNGOBalance

);

 uint256 _ngoAssets = _ngoShare.mulDiv(

 lastNGOBalanceToWsEth,

 totalNGOShares

);

 userBalance = assets[_user][_id] + _ngoAssets;

 userBalance = wstETHSC.getStETHByWstETH(userBalance);

 return userBalance;

}

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 34

Location

Description

In the function withdrawCalculation of contract NGOLis , with sufficiently low values of

_ratio and _ngoAssets , certain multiplications or multiplications of their derivatives may

result in a value of 0 due to rounding during division by DIVIDER :

assets[msg.sender][_id] -= _ratio.mulDiv(

 assets[msg.sender][_id],

 DIVIDER

);

uint256 withdrawnNgoAssets = _ngoAssets.mulDiv(_ratio, DIVIDER);

totalNGOAssets -= withdrawnNgoAssets;

totalNGOShares -= _ngoShare.mulDiv(_ratio, DIVIDER);

ngoShares[msg.sender][_id] -= _ngoShare.mulDiv(_ratio, DIVIDER);

lastNGOBalance -= wstETHSC.getStETHByWstETH(withdrawnNgoAssets);

For example, when _ngoAssets and _ratio are low, the calculation of

withdrawnNgoAssets may yield 0 . In this case, we get a mismatch between the NGO assets

stored in the contract and the accounting balances totalNGOAssets in the contract, which

leads to an incorrect ratio of totalNGOShares/totalNGOAssets .

Recommendation

We recommend setting minimum allowable values for _ratio calculated in the

withdrawCalculation function and for _ngoAssets in the staking functions, or checking

M-03
Risk of Zero Calculation for Low _ratio and _ngoAsse

ts in NGOLis

Severity MAJOR

Status • FIXED

File Location Line

 contract NGOLis > function withdrawCalculation 789NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L789

fINDINGS REPORT 35

the results of multiplications by _ratio to prevent zero values due to rounding during

division.

Update

Client's response

We’ve set up a minimum amount to stake, which resolved an issue for small amounts.

Minimum amount 1000 wei with minimum % = 100 is the smallest possible option for

withdrawals. We’ve also set up a minimum possible amount to withdraw for 100 wei. For

this case:

Withdraws 100 wei (minimum allowable amount).

ratio = 10^18 * 100/1000 = 10^17

withdrawnNGOassets = ratio * ngoAssets / divider = 10^17 * 10 / 10^18 = 1 wei

(which is accurate)

For the case with big amounts minimum amount to withdraw is corrected with new check

for ratio != 0:

User staked 100000 * 10^18 wei (100000 ETH with 1% to NGO)

Withdraws 100000 wei (less amounts will revert transaction as ratio == 0)

ratio = 10^18 * 100000/100000 * 10^18 = 1

withdrawnNGOassets = ratio * ngoAssets / divider = 1 * 1000 * 10^18 / 10^18 =

1000 wei (which is accurate).

Client's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 36

Location

Description

In the handleNGOShareDistribution function of the NGOLis contract, the current NGO

balance in stETH is determined using the getStETHByWstETH function relative to the

accumulated totalNGOAssets balance in wstETH :

uint256 _currentNGOBalance = wstETHSC.getStETHByWstETH(totalNGOAssets);

uint256 _rewardsAssets = wstETHSC.getWstETHByStETH(

 _currentNGOBalance - lastNGOBalance

);

However, in the case of validator slashing, there may be less ETH in the Lido contract than

there was previously. As a result, the current balance _currentNGOBalance may be lower

than the previously recorded balance in the variable lastNGOBalance .

This would lead to an underflow when attempting to calculate the difference

_currentNGOBalance - lastNGOBalance .

Recommendation

We recommend implementing a check to ensure that the difference between the current

and previous balances does not lead to underflow, and providing a clear error message for

the user if it does.

M-04
Underflow occurring during validator slashing events in

NGOLis

Severity MAJOR

Status • FIXED

File Location Line

 contract NGOLis > function handleNGOShareDistribution 602NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L602

fINDINGS REPORT 37

Update

Client's response

New function pendingRewardsCalculation() is used for calculations of rewards in

handleNGODistribution . If lastNGOBalance >= _currentNGOBalance calculation won’t

happen. If after the function we’ve set up a check for pendingNGOrewards != 0 . If it equals

to 0 , the function would return an error. This also covers the case when pendingReward

was 0 before pendingRewardsCalculation() , as it will affect in the check:

If pendingNGOrewards was 0 , and after pendingRewardsCalculation() it’s still 0 , then

lastNGOBalance >= _currentNGOBalance and contract revert an error.

If we had pending NGOrewards was greater than 0 , we should distribute this amount, but

lastNGObalance will be changed based on change during slashing event (it will be equal to

currentNGOBalance).

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 38

Location

Description

In the function requestWithdrawals of contract NGOLis , there is a check for the minimum

withdrawal amount. However, if the remaining balance on the contract after a withdrawal is

less than the minimum, these funds will remain on the contract forever without the

possibility of withdrawal.

Recommendation

We recommend refactoring the logic so that the user receives their entire stake if

attempting to withdraw an amount that would leave an unwithdrawable balance. This will

ensure that no "dust" remains after a withdrawal.

Update

Client's response

In function withdrawCalculation() we have added a check for the amount which is being

withdrawn.

For these purposes, we have created a new constant WITHDRAW_GAP (equals to 100 wei). It

represents the min amount that can be stored for each user. If after withdrawal the amount

less than WITHDRAW_GAP remains for user, we push remainder to be withdrawn (so user’s

balance is fully withdrawn).

if (userBalanceInStEth - _amount < WITHDRAW_GAP) {

 _amountWstETH = wstETHSC.getWstETHByStETH(userBalanceInStEth);

} else {

M-05 Unwithdrawable balance after withdrawal in NGOLis

Severity MAJOR

Status • FIXED

File Location Line

 contract NGOLis > function requestWithdrawals 649

 contract NGOLis > function claimWithdrawInStEth 724

 contract NGOLis > function claimWithdrawInWStEth 759

NGOLis.sol

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L649
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L724
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L759

fINDINGS REPORT 39

 _amountWstETH = wstETHSC.getWstETHByStETH(_amount);

}

Oxorio's response

1) Incorrect calculation

in a situation where user Balance In StEth is less than WITHDRAW_GAP , the value should

be

`total User W stETH , because we take the entire balance of wasteth , and in this case the

ratio will be equal to 1.

But in the current code, this may not happen because in the current code it is considered

like this

 uint256 userBalanceInStEth = getUserBalance(msg.sender, _id);

 _amountWstETH = wstETHSC.getWstETHByStETH(userBalanceInStEth);

at the same time getUserBalance counts like this:

function getUserBalance(

 address _user,

 uint256 _id

) public view returns (uint256 userBalance) {

 uint256 _ngoShare = ngoShares[_user][_id];

 uint256 lastNGOBalanceToWsEth = wstETHSC.getWstETHByStETH(

 lastNGOBalance

);

 uint256 _ngoAssets = _ngoShare.mulDiv(

 lastNGOBalanceToWsEth,

 totalNGOShares

);

 userBalance = assets[_user][_id] + _ngoAssets;

 userBalance = wstETHSC.getStETHByWstETH(userBalance);

 return userBalance;

}

fINDINGS REPORT 40

where ngoAssets is already calculated based on lastNGOBalanceToWsEth and therefore

_amountWstETH will not be equal to totalUserWstETH .

2) Redunant calls

The current code has a huge number of unnecessary calls, function calls are becoming

expensive, every time a call is made to the

getUserBalance , getWstETHByStETH and getWstETHByStETH , there is an external call to

the wstETH contract.

it's in the function:

 function withdrawCalculation(

 uint256 _amount,

 uint256 _id

) private returns (uint256 _amountWstETH) {

 uint256 _ngoShare = _ngoShares[msg.sender][_id];

 pendingRewardsCalculation();

 uint256 _ngoAssets = _ngoShare.mulDiv(_totalNGOAssets, _totalNGOShares);

 uint256 _totalUserWstETH = _assets[msg.sender][_id] + _ngoAssets;

 // 2 external call

 uint256 userBalanceInStEth = getUserBalance(msg.sender, _id);

 // 1 external call

 if (userBalanceInStEth - _amount < WITHDRAW_GAP) {

 _amountWstETH = wstETHSC.getWstETHByStETH(userBalanceInStEth);

 } else {

 _amountWstETH = wstETHSC.getWstETHByStETH(_amount);

 }

 uint256 _ratio = _amountWstETH.mulDiv(DIVIDER, _totalUserWstETH);

 if (_ratio == 0) {

 revert InvalidWithdrawAmount();

 }

 _assets[msg.sender][_id] -= _ratio.mulDiv(

 _assets[msg.sender][_id],

 DIVIDER

);

 uint256 withdrawnNgoAssets = _ngoAssets.mulDiv(_ratio, DIVIDER);

 _totalNGOAssets -= withdrawnNgoAssets;

fINDINGS REPORT 41

 _totalNGOShares -= _ngoShare.mulDiv(_ratio, DIVIDER);

 _ngoShares[msg.sender][_id] -= _ngoShare.mulDiv(_ratio, DIVIDER);

 // 1 external call

 _lastNGOBalance = wstETHSC.getStETHByWstETH(_totalNGOAssets);

 return (_amountWstETH);

 }

whereby the value userBalanceInStEth can be passed as a parameter, since the

getUserBalance(msg.sender, _id) occurs in all three calls to requestWithdrawals ,

claimWithdrawInWStEth , claimWithdrawInStEth .

Client's response

In function WithdrawCalculation() we use user balance from function

getUserBalance() that equals to user balance calculated based on lastNGOBalance .

Conversion of _totalUserWstETH cannot be equal to _userBalanceInStEth as we use

LIDO protocol which have 1-2 wei issue docs.lido.fi/guides/lido-tokens-integration-guide/

#1-2-wei-corner-case.

It can affect calculations inside smart contract and disable withdrawals for users.

We understand that dust (1-4 wei) can remain on users balances after full withdrawal, as we

take into account LIDO’s 1-2 wei issue.

For the function WithdrawCalculation() we have added a new parameter

_userBalanceInStEth . It replicates getUserBalance() function usage (is called before

withdrawCalculation()).

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b .

https://docs.lido.fi/guides/lido-tokens-integration-guide/#1-2-wei-corner-case
https://docs.lido.fi/guides/lido-tokens-integration-guide/#1-2-wei-corner-case
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 42

3.3 WARNING

Location

Description

In the function claimWithdrawInStEth of contract NGOLis , it is possible to pass

_amount == 0 . This results in the ability to spam the frontend and monitoring systems with

WithdrawInStEthClaimed events, paying only for the transaction gas.

Recommendation

We recommend adding a check for the _amount value to prevent zero values.

Update

Client's response

Added a check for the _amount which is passed to claimWithdrawInStEth function and

added the revert “ZeroAmount” when amount == 0 is passed.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

W-01 Possible to pass a zero _amount in NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function claimWithdrawInStEth 653NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L653
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 43

Location

Description

In the function getUserBalance of contract NGOLis , when calculating rewardToNgo , the

expression (shares[_user][_id] * currentBalance) / totalShares is computed.

However, this expression has already been computed for the variable

userTotalShareWithNgoReward :

uint256 userTotalShareWithNgoReward = shares[_user][_id].mulDiv(

 currentBalance,

 totalShares

);

// ...

rewardToNgo =

 ((((shares[_user][_id] * currentBalance) / totalShares) -

 stakedInfo.amount) * stakedInfo.percent) /

 PERCENT_DIVIDER;

userTotal = userTotalShareWithNgoReward - rewardToNgo;

Moreover, the variable userTotalShareWithNgoReward is calculated using the mulDiv

library, while rewardToNgo is not.

This can lead to a situation where, due to rounding in the calculation of rewardToNgo , the

final value of userTotal is greater than it should be with a more accurate calculation using

the mulDiv library.

W-02
Inconsistency in the calculation of userTotalShareWit

hNgoReward and rewardToNgo in NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function getUserBalance 723NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L723

fINDINGS REPORT 44

Recommendation

We recommend using the already calculated value of userTotalShareWithNgoReward

when calculating the variable rewardToNgo instead of the expression

(shares[_user][_id] * currentBalance) / totalShares . This will make the code

cleaner, more gas-efficient, and eliminate inaccuracies in calculating userTotal .

Update

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 45

Location

Description

In the function getUserBalance of contract NGOLis , if shares == 0 , the function returns

the user's balance equal to the amount of their original stake. This means that a user with

shares == 0 can only withdraw their stake back, while all accumulated rewards for that

stake remain in the contract and cannot be withdrawn by anyone.

Recommendation

We recommend considering the addition of accounting for accumulated rewards in cases

where the user has shares == 0 and stakedInfo.amount != 0 , to avoid a situation

where tokens may get stuck in the contract with no possibility of withdrawal.

Update

Client's response

New formulas were implemented for the function getUserBalance based on specification.

Unnecessary calculations were removed.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

W-03
User does not receive rewards for staking when

shares == 0 in NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function getUserBalance 706NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L706
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 46

Location

Description

In the function convertAssetsToShares of contract NGOLis , the number of shares is

calculated based on the current values of totalShares and totalAssets :

return (assets * totalShares) / totalAssets;

However, totalAssets is set immediately before the call to the function

convertAssetsToShares and is equal to the current balance of the contract in stETH.

Thus, if totalAssets is greater than (assets * totalShares) , the conversion function

will return 0 shares.

This is possible, for example, if an inattentive user accidentally transfers a significant

amount of their stETH to the address of the contract NGOLis . In this case, protocol users

invoking staking functions such as stake/stakeStEth will end up receiving 0 shares.

Recommendation

We recommend considering refactoring the logic so that the accounting of the stETH

balance occurs on the contract, rather than obtaining it at the moment via the external call

balanceOf . This could prevent users from attempting to manipulate the contract balance.

Update

Client's response

Function convertAssetsToShares was removed new functionality with wstETH and shares

for NGO is used.

W-04
Possible to receive a zero amount of shares when

converting non-zero assets in NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function convertAssetsToShares 425NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L425

fINDINGS REPORT 47

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 48

Location

Description

In the function createNGO of contract NGOLisFactory , a proxy is created based on the

contract ERC1967Proxy , rather than the contract NGOLisProxy .

Recommendation

We recommend changing the contract for proxy creation from ERC1967Proxy to

NGOLisProxy , or removing the NGOLisProxy contract if it is not used.

Update

Client's response

Contract NGOLisProxy was removed. ERC1967Proxy is used.

Oxorio's response

Not fixed, the contract NGOLisProxy exists in

b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

Client's response

Was deleted with the commit e862675353e08d83265337d1944d5d2ca6b6be31.

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31.

W-05
Proxy creation uses ERC1967Proxy instead of

NGOLisProxy in NGOLisFactory

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLisFactory > function createNGO 95NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLisFactory.sol#L95
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 49

Location

Description

In the function initialize of contract NGOLis , the function __ReentrancyGuard_init is

not called to initialize the inherited contract ReentrancyGuardUpgradeable .

Recommendation

We recommend adding a call to the function __ReentrancyGuard_init in the function

initialize .

Update

Client's response

Added __ReentrancyGuard_init call to the function initialize .

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

W-06
Function __ReentrancyGuard_init is not called

during initialization in NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function initialize 393NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L393
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 50

Location

Description

In the function requestWithdrawals of contract NGOLis , a request for withdrawal is made

for the size of _amount . However, in the called external contract withdrawalSC , there is a

check on the size of the passed _amount :

if (_amountOfStETH < MIN_STETH_WITHDRAWAL_AMOUNT) {

 revert RequestAmountTooSmall(_amountOfStETH);

}

if (_amountOfStETH > MAX_STETH_WITHDRAWAL_AMOUNT) {

 revert RequestAmountTooLarge(_amountOfStETH);

}

This leads to the situation where the user will receive an error if they pass an out-of-bounds

size for _amount , but only after a series of calculations have been performed.

Recommendation

We recommend adding checks for the minimum and maximum allowable size of _amount

for withdrawal requests at the beginning of the function. It is also advisable to consider

adding additional logic that would break the request into several separate requests if the

size of _amount exceeds the established limit.

Update

Client's response

Added checks for MIN and MAX withdrawal amount in the function requestWithdrawals .

W-07
Insufficient validation of the size of _amount for

withdrawal requests in NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function requestWithdrawals 587NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L587
https://github.com/lidofinance/lido-dao/blob/master/contracts/0.8.9/WithdrawalQueue.sol#L396

fINDINGS REPORT 51

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 52

Location

Description

In the function setUserBan of contract NGOLis , it is possible to ban a user. In such a case,

their funds become frozen in the contract. If these funds were obtained by the user through

illegal means, the admin cannot withdraw them.

The same applies to the funds of inattentive users who accidentally transferred their ETH or

any other tokens to the contract.

Recommendation

We recommend implementing a function in the contract that would allow the admin to

withdraw stuck tokens or excess ETH that was not staked in the manner prescribed in the

contract.

Update

Client's response

We appreciate the suggestion to implement an admin function to withdraw stuck tokens or

excess ETH . However, based on our protocol’s philosophy, user funds should always remain

accessible solely by the user, even in cases where they may no longer be able to participate

in staking due to a ban.

To maintain user control over their staked funds, we implemented a solution that allows

banned users to withdraw their staked funds but prevents them from staking additional

funds. This ensures that banned users retain ownership and withdrawal rights over their

funds, preserving security and user autonomy while still meeting the restriction objectives.

Launchnodes can never have custody or access to LIS users staked assets.

W-08
Users cannot withdraw stuck funds from the contract in

NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function setUserBan 857NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L857

fINDINGS REPORT 53

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 54

Location

Description

In the claimWithdrawal function of the NGOLis contract, the WithdrawClaimed event uses

an incorrect value for amount. The event description states:

 /**

 * @dev Emitted when a user claims a withdrawal.

 * @param _claimer The address of the user claiming withdrawal.

 * @param _ngo The address of the NGO contract.

 * @param _amount The amount of ETH claimed.

 * @param _requestId The ID of the withdrawal request.

 * @param _timestamp The block timestamp when withdraw was claimed.

 * @param _blockNumber The block number when withdraw was claimed.

 */

However, instead of the amount in ETH , the parameter status.amountOfStETH is passed,

which reflects the amount requested for withdrawal in stETH , but not the amount actually

received by the user. This could lead to incorrect interpretation of the parameters by those

working with the protocol.

Recommendation

We recommend either updating the documentation or correcting the value to the accurate

ETH amount that the user receives.

W-09
Incorrect value in the WithdrawClaimed event in NGOL

is

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function claimWithdrawal 705NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L705

fINDINGS REPORT 55

Update

Oxorio's response

Changed documentation (displaying stETH data from LIDO instead of ETH).

Client's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 56

Location

Description

In the function withdrawCalculation of the NGOLis contract, the StakeInfo structure

within the mapping _userToStakeInfo is not being updated. According to the

documentation:

/**

 * @dev Struct representing stake information for a user.

 */

struct StakeInfo {

 uint16 percent;

 uint amount;

 uint startDate;

}

However, the amount parameter is not updated during withdrawCalculation . This results

in the getUserStakeInfo function reflecting incorrect information about the user's stake.

Recommendation

We recommend updating the StakeInfo in the _userToStakeInfo mapping to ensure

accurate reflection of a user's stake information.

Update

Client's response

StakeInfo displays initial data for stake. Updated documentation.

W-10
StakeInfo is not updated during withdraw operations

in NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function withdrawCalculation 823NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L823

fINDINGS REPORT 57

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 58

Location

Description

In the mentioned locations, the modifiers validAmount and validWithdrawalAmount

receive the amount parameter, which is then checked against the constants MIN_AMOUNT

and MIN_WITHDRAWAL_AMOUNT , respectively. However, the functions accept amounts of

tokens of different types.

This results in stEth and wstEth tokens being checked against the same minimum values

(MIN_AMOUNT and MIN_WITHDRAWAL_AMOUNT), even though the tokens have different

dimensions.

Recommendation

We recommend adding separate minimum values for each token type for validation.

Update

Client's response

Constant variable MIN_AMOUNT represents minimum amount in wei (equals to 1000). This

variable is used in modifier validAmount() for stake, stakeStEth to check if amount passed to

stake is not less than minimum amount (constant variable in wei). It’s used for both native

ETH and stETH (as stETH represents ETH amount and they’re meant to be equaled)

W-11
Equality of minimum values for different tokens

wstEth and stEth in NGOLis

Severity WARNING

Status • FIXED

File Location Line

 contract NGOLis > function stake 516

 contract NGOLis > function stakeStEth 555

 contract NGOLis > function stakeWStEth 589

 contract NGOLis > function claimWithdrawInStEth 724

 contract NGOLis > function claimWithdrawInWStEth 759

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L516
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L555
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L589
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L724
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L759

fINDINGS REPORT 59

For function stakeWStEth new revert() to check if the amount in WStEth passed is valid.

In the revert we check if the amount in WStEth converted to StEth is not less than

MIN_AMOUNT in wei (it’s made to check conversion amount, as conversion of WStEth to StEth

is not static, and can be increased/decreased with time).

Constant variable MIN_WITHDRAWABLE_AMOUNT represents the minimum amount in wei that

could be withdrawn in wei (equals to 100). This variable is used on modifier

validWithdrawalAmount in function claimWithdrawInStEth() .

In function claimWithdrawInWStEth() we added a revert in check if passed amount

(converted to StEth) is not less than MIN_WITHDRAWABLE_AMOUNT .

With new changes, for each token type we have set up different minimum amounts (using

reverts or modifiers).

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b

https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 60

Location

Description

In the function withdrawCalculation of contract NGOLis , it is possible for the ratio to

equal zero. For example, if _amountWstETH = 999 and _totalUserWstETH exceeds

1000 * 10^18 .

In this case, some amount of tokens cannot be withdrawn from the contract:

if (_ratio == 0) {

 revert InvalidWithdrawAmount();

}

Recommendation

We recommend revising the withdrawal calculation logic to prevent a scenario where

ratio == 0 .

Update

Client's response

Added this edge case scenario in our documentation here launchnodes.gitbook.io/lido-

impact-staking-lis/contracts/ngolis#security-features.

W-12 Zero ratio after rounding during division in NGOLis

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract NGOLis > function withdrawCalculation 810NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L810
https://launchnodes.gitbook.io/lido-impact-staking-lis/contracts/ngolis#security-features
https://launchnodes.gitbook.io/lido-impact-staking-lis/contracts/ngolis#security-features

fINDINGS REPORT 61

3.4 INfO

Location

Description

In the function handleNGOShareDistribution of the contract NGOLis , the accumulated

rewards are distributed only if the current time is greater than or equal to

lastCountRewardsTimestamp :

if (block.timestamp < lastCountRewardsTimestamp)

 revert TimeNotPassed(block.timestamp, lastCountRewardsTimestamp, 0);

// ...

lastCountRewardsTimestamp += 1 hours;

After the distribution of rewards, lastCountRewardsTimestamp is increased by one hour.

Thus, rewards can be distributed no more frequently than once an hour.

However, during the initialization of the contract, according to the function getRoundDate ,

the variable lastCountRewardsTimestamp is set to the beginning of the current day, rather

than the hour:

function getRoundDate(uint _timestamp) private pure returns (uint) {

 return (_timestamp / 1 days) * 1 days;

}

I-01
Delay between reward distributions changes after

contract initialization in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function handleNGOShareDistribution 564NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L564

fINDINGS REPORT 62

As a result, there is a possibility that immediately after the contract initialization, the reward

distribution may be called multiple times in a row. A similar situation may arise if the

function handleNGOShareDistribution has not been called for more than two hours.

This leads to a distortion in the recording of historical data, as the time

lastCountRewardsTimestamp will not correspond to the rewards earned in the hour:

_historyRewards[lastCountRewardsTimestamp] = _rewardsForToday;

_historyStakedBalance[lastCountRewardsTimestamp] = stakedBalance;

_historyBalance[lastCountRewardsTimestamp] = currentBalance;

It is also worth noting that variable names such as totalShareToday and

_rewardsForToday may be misleading, as they imply a daily distribution.

Recommendation

We recommend eliminating the inconsistency between setting

lastCountRewardsTimestamp during contract initialization and its subsequent use, as well

as considering renaming the variables totalShareToday and _rewardsForToday to avoid

confusion.

Update

Client's response

Removed a check for last time reward because now it is not necessary with new wstETH

logic. Variables totalShareToday and _rewardsForToday were removed.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 63

Location

Description

In the function createNGO of contract NGOLisFactory , a proxy contract for the NGO is

created and the address owner is passed as the owner of this contract. However, in the

mapping ownerToNgo for the created NGO contract, the address msg.sender is set as the

owner instead of owner .

It should also be noted that the mapping ownerToNgo cannot be changed later. At the same

time, the NGO owner’s address can be changed by calling transferOwnership .

Recommendation

We recommend changing the owner set for the NGO in the mapping ownerToNgo from

msg.sender to owner , as well as considering adding logic for changing the owners of NGOs

in the mapping ownerToNgo .

Update

Client's response

Removed mapping ownerToNgo due non-unusage of unread method and inside of smart

contract.

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b

I-02
Setting msg.sender instead of owner in the mapping

ownerToNgo in NGOLisFactory

Severity INFO

Status • FIXED

File Location Line

 contract NGOLisFactory > function createNGO 107NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLisFactory.sol#L107
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 64

Location

Description

In the function claimWithdrawal of contract NGOLis , require is used to check a

condition. However, throughout the rest of the contract code, the revert call is used in

case of errors.

Recommendation

We recommend replacing require with a revert call to maintain a consistent style of

error notifications.

Update

Client's response

Replaced all require with a revert calls to maintain a consistent style of error notifications.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

I-03 Inconsistency in error notification methods in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function claimWithdrawal 630NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L630
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 65

Location

Description

In the constructor of contract NGOLis , there is no call to the _disableInitializers

method.

The absence of the _disableInitializers method could potentially allow an attacker to

gain administrative rights in the implementation contract by calling the initialize

function. After obtaining such rights, they could use them to perform, for example, phishing

attacks.

Recommendation

We recommend invoking the _disableInitializers in the constructor of NGOLis .

Update

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

I-04
No _disableInitializers call in the constructor in

NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function initialize 19NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L19
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 66

Location

Description

In the mentioned locations, the storage variable totalAssets is set. It is used only within a

single function and is private. Thus, there is an expensive write and read operation from

storage instead of storing this value in memory.

Recommendation

We recommend removing the totalAssets variable from storage and storing its value in

memory when working with the stake and stakeStEth functions.

Update

Client's response

Removed unnecessary variable totalAssets as new logic was implemented.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

I-05
Redundant storage of the totalAssets value in

NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function stake 436

 contract NGOLis > function stakeStEth 486

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L436
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L486
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 67

Description

In the contract NGOLis , in several cases, the same variables from storage are read and

rewritten multiple times during the function call. For example, the variable

lastCountRewardsTimestamp in the function handleNGOShareDistribution .

This leads to suboptimal gas consumption when working with such functions.

Recommendation

We recommend loading frequently used storage variables into memory during function

calls, as working with memory is more efficient for the end user.

Update

Client's response

lastCountRewards was removed from the smart contract as it’s not needed for logic of the

project. We have removed all such variables (there were 3 of them) For now, based on

specification, we made variables optimized.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

I-06 Suboptimal handling of storage variables in NGOLis

Severity INFO

Status • FIXED

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 68

Location

Description

In the function initialize of contract NGOLis , the input parameters are not validated. For

example, the passed addresses can be equal to 0 , which would lead to setting incorrect

values for state variables.

Recommendation

We recommend adding validation for the input parameters.

Update

Client's response

Added validation for zero address in the function initialize .

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

I-07 No parameter validation in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function initialize 393NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L393
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 69

Location

Description

In the file IAccountOracle.sol , the interface IAccountOracle is defined, which is not

used in the project.

Recommendation

We recommend removing the interface IAccountOracle to maintain codebase cleanliness.

Update

Client's response

Unnecessary interface IAccountOracle was removed.

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

I-08 Interface not used in IAccountOracle.sol

Severity INFO

Status • FIXED

File Location Line

 interface IAccountOracle 4IAccountOracle.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/interfaces/IAccountOracle.sol#L4
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 70

Location

Description

In the NGOLis contract, the variable _prevRewards is defined but not used. At the same

time, there is a similar variable prevRewards that is actively used.

Recommendation

We recommend removing the _prevRewards variable to maintain code clarity and eliminate

ambiguity.

Update

Client's response

Unnecessary variable _prevRewards was removed.

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

I-09 Unused variable _prevRewards in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis 278NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L278
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 71

Location

Description

In the handleNGOShareDistribution function of the NGOLis contract, there is a check to

ensure that _rewardsForToday is not less than 0 :

if (_rewardsForToday <= 0) revert RewardError();

However, the _rewardsForToday variable is of type uint256 , an unsigned type that cannot

be less than 0 .

Recommendation

We recommend removing the check for _rewardsForToday < 0 and keeping only the

check for equality to zero.

Update

Client's response

Removed the check _rewardsForToday < 0 .

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

I-10
Redundant check for unsigned value being negative in

NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function handleNGOShareDistribution 540NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L540
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 72

Location

Description

In the withdrawCalculation function of the NGOLis contract, the check for a non-zero

amount of the stake occurs after calling the getCurrentBalanceFromLido and

getUserBalance functions:

StakeInfo storage stakeInfo = _userToStakeInfo[msg.sender][_id];

uint currentBalance = getCurrentBalanceFromLido();

uint256 userBalance = getUserBalance(msg.sender, _id);

if (stakeInfo.amount == 0) {

 revert NotStaked();

}

This results in unnecessary computations being performed before the function reverts, in

case stakeInfo.amount == 0 .

Recommendation

We recommend moving the check for a zero stakeInfo.amount to the beginning of the

function.

Update

Client's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

I-11
Balance calculation before checking for stake existence

in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function withdrawCalculation 749NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L749
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 73

Client's response

Removed the check for zero amount as other functions have validations before triggering

withdrawCalculation:

 if (_amount == 0) {

 revert ZeroAmount();

 }

or

 if (_amount < withdrawalSC.MIN_STETH_WITHDRAWAL_AMOUNT()) {

 revert RequestAmountTooSmall(_amount);

 }

fINDINGS REPORT 74

Location

Description

In the mentioned locations, in the case of the very first stake, that is when totalShares

equals zero, the input value assets is not validated. It is converted to share on a one-to-

one basis, which cannot be less than 1000 . Otherwise, an underflow will occur:

uint256 share = convertAssetsToShares(assets);

if (totalShares == 0) {

 // ...

 share -= 1000;

}

Thus, under these conditions, if a user passes assets < 1000 , they will receive an

unreadable error.

Recommendation

We recommend explicitly validating the converted value of share and returning a clear

error message to the user if, when totalShares == 0 , the value of share is less than

1000 .

Update

Client's response

The validation was removed, as new wsETH logic was implemented based on specifications.

I-12
Insufficient validation in the case of the very first stake

in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function stake 455

 contract NGOLis > function stakeStEth 504

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L455
https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLis.sol#L504

fINDINGS REPORT 75

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 76

Location

Description

In the withdrawFeeStEth function of the contract NGOLisFactory , the event name in the

specification does not match the actual emitted event within the function:

 * @notice Emit [NGOCreated](#ngocreated) event

 */

function withdrawFeeStEth() public onlyOwner {

 // ...

 emit LisFeeClaimed(_balanceForWithdraw);

}

Recommendation

We recommend changing the event name in the specification from NGOCreated to

LisFeeClaimed .

Update

Client's response

Event name NGOCreated was changed to correct LisFeeClaimed .

Oxorio's response

Fixed in b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216 .

I-13
Event name in the specification is misleading in NGOLis

Factory

Severity INFO

Status • FIXED

File Location Line

 contract NGOLisFactory 123NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/1328366ebc49fd40c93a57622678d655bec42ab5/contracts/NGOLisFactory.sol#L123
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216

fINDINGS REPORT 77

Location

Description

In the mentioned locations, most of the code in the three specified functions is identical.

The code starting with the calculation of _ngoAssets could be extracted into a separate

function.

Recommendation

We recommend considering the extraction of the common code in the stake , stakeStEth ,

and stakeWStEth functions into a separate private function to optimize and simplify

codebase maintenance.

Update

Client's response

Created new private function assetsCalculation(uint256 _amount, uint16 _percent)

private for calculations in other functions.

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

I-14 Similar code in identical functions in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function stake 444

 contract NGOLis > function stakeStEth 500

 contract NGOLis > function stakeWStEth 553

NGOLis.sol

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L444
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L500
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L553
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 78

Location

Description

In the function handleNGOShareDistribution of contract NGOLis , with sufficiently low

values of _rewardsAssets , there may be a situation where due to rounding during division,

the value of _fee will be zero:

uint256 _fee = _rewardsAssets.mulDiv(LIS_FEE, PERCENT_DIVIDER);

wstETHSC.transfer(_lis, _fee);

In this case, it is meaningless to perform a transfer of zero _fee . Moreover, this will lead to

the emission of events regarding the conducted transfer.

Recommendation

We recommend not to invoke the transfer when _fee is zero, to avoid unnecessary

external calls and to prevent the creation of unnecessary events for transferring 0 funds.

Update

Client's response

Added a check for fee amount and won’t invoke transfer fee if it equals to 0:

if (_fee != 0) {

 wstETHSC.transfer(_lis, _fee);

}

I-15 Transfer of zero _fee is possible in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function handleNGOShareDistribution 612NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L612

fINDINGS REPORT 79

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 80

Location

Description

In the mentioned locations, the input parameters are not validated. For example, the

passed addresses can be equal to 0 , which would lead to setting incorrect values for state

variables.

Recommendation

We recommend adding validation for the input parameters, as is done for the initialize

function, to maintain consistency in checks.

Update

Client's response

Added validation to zero address in function setOracle , setRewardsOwner .

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

I-16 No setter parameter validation in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function setOracle 843

 contract NGOLis > function setRewardsOwner 851

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L843
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L851
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 81

Description

In many contracts across the project, both uint and uint256 are used simultaneously for

defining variable types. For example:

function claimWithdrawInWStEth(uint256 _amount, uint _id) public {

Recommendation

We recommend using a single type for variable definitions to maintain a consistent style

across the project. This practice improves code readability and maintainability by reducing

confusion and potential type conversion issues.

Update

Client's response

Changed uint to uint256 types for the project.

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

I-17 Simultaneous use of uint and uint256 types

Severity INFO

Status • FIXED

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L736
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 82

Location

Description

In the mentioned locations, the increment operator (+=) is used for the value. However,

each new operation is recorded under a separate id , and the value of the previous stake

can only change upon withdrawal.

Recommendation

We recommend replacing the += operator with the = operator.

Update

Client's response

Replaced the += operator with the = operator.

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

I-18 Redundant increment operation in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function stake 449

 contract NGOLis > function stake 466

 contract NGOLis > function stakeStEth 508

 contract NGOLis > function stakeStEth 525

 contract NGOLis > function stakeWStEth 561

 contract NGOLis > function stakeWStEth 579

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L449
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L466
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L508
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L525
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L561
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L579
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 83

Location

Description

In the mentioned locations, the user's balance in wstETH tokens is calculated. However, the

same balance is already reflected in the _userToStakeInfo mapping and the StakeInfo

structure.

Recommendation

We recommend using the _userToStakeInfo mapping and the amount value from the

StakeInfo structure instead of recalculating userBalance.

Update

Client's response

UserStakeInfo is used as info about initial stake. This data is not being updated, that’s why

we cannot use this method for other calculations.

Oxorio's response

Fixed in e862675353e08d83265337d1944d5d2ca6b6be31 .

I-19 Suboptimal computation of user balance in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function getUserBalance 849

 contract NGOLis > function withdrawCalculation 795

NGOLis.sol

NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L849
https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L795
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31
https://github.com/Launchnodes-Ltd/LIS/commit/e862675353e08d83265337d1944d5d2ca6b6be31

fINDINGS REPORT 84

Location

Description

The NGO contract lacks functionality for withdrawing tokens and ETH that were transferred

by mistake.

Recommendation

We recommend removing the receive() external payable {} function and adding a

separate function that allows for the withdrawal of tokens mistakenly received by the

contract, without affecting the staked balance of wstETH.

Update

Client's response

We are interpreting this as a requirement to the remove functions

receive() external payable {} function . In order to do this we’ll need to rewrite other

methods (such as Stake), as the function is used there .

We think u are suggesting we create functionality for some kind of “admins” , as we cannot

store data inside smart contract about transfers, as functions and formulas of smart

contract are not being triggered.

We do not want to do this and we do not want to create a separate function for the smart

contract to allow funds to be returned in the event that someone sends funds to the smart

contract accidentally instead of staking on LIS. The reasons are

This functionality becomes an attack vector for each social impact project.

Anyone sending funds to a smart contract is warned by their wallet that they are sending

their funds to a smart contract not a wallet and may lose their funds.

We will re-iterate this warning in our documentation and ask impact stakers to contact us if

I-20
Missing functionality for mistaken tokens and ETH

withdrawal in NGOLis

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 - -NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/b2d4294584ab74093b5b3e9f7f00ae9ed9fcd216/contracts/NGOLis.sol#L-L

fINDINGS REPORT 85

they need support depositing to LIS .

We think this is more about application functionality than security. We would welcome your

feedback on our analysis of this point.

fINDINGS REPORT 86

Location

Description

In the mentioned locations, contracts and libraries are imported but not used within the

contracts.

Recommendation

We recommend removing unused imports to maintain codebase cleanliness.

Update

Client's response

Removed all unused imports, contacts from NGOLis.sol and NGOLisFactory.sol .

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b .

I-21
Unused contracts in NGOLis.sol , NGOLisFactory.so

l

Severity INFO

Status • FIXED

File Location Line

 - 7

 - 6

NGOLis.sol

NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L7
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L6
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 87

Location

Description

In the contract NGOLis , the error FeeError is defined but not used in the code.

Recommendation

We recommend removing the definition of the FeeError to maintain codebase cleanliness.

Update

Client's response

Removed all unused errors from NGOLis.sol .

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b .

I-22 Unused error in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis 229NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L229
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 88

Location

Description

In the function claimWithdrawInWStEth of contract NGOLis , the value returned by the

function getStETHByWstETH is assigned to the variable wstAmount , although the value

represents stEth instead of wstEth , which might cause confusion:

uint256 wstAmount = wstETHSC.getStETHByWstETH(_amount);

Recommendation

We recommend renaming the variable wstAmount to correspond to the token stEth , such

as stAmount .

Update

Client's response

Variable wstAmount was renamed to stEthAmount .

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b .

I-23
Misleading variable name wstAmount instead of stAmo

unt in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function claimWithdrawInWStEth 763NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L763
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 89

Location

Description

In the function claimWithdrawInWStEth of contract NGOLis , the parameter _amount ,

which represents the size of wstEth for the claim, is passed when emitting an event:

* @param _amount Amount of WStEth for claiming.

However, the event description specifies that the parameter represents stEth :

* @param _amount The amount of stETH claimed.

Recommendation

We recommend passing the documented value when emitting the event or updating the

parameter description accordingly.

Update

Client's response

Changed documentation for the event. It describes that the amount passed to an event

relies on ETH type.

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b .

I-24
Incorrect event parameter value wstEth instead of

stEth in NGOLis

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function claimWithdrawInWStEth 776NGOLis.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L776
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 90

Location

Description

In the mentioned locations, state variables have inconsistent naming styles and modifiers:

In NGOLis , variables lack the public modifier despite not having leading underscores.

In NGOLisFactory , internal variables are named inconsistently, some with leading

underscores and some without.

Recommendation

We recommend refactoring variable names and applying appropriate modifiers to ensure

consistent style and clarity in the code.

I-25
Inconsistent state variable naming style in NGOLis , NGO

LisFactory

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis 397

 contract NGOLis 402

 contract NGOLis 407

 contract NGOLis 412

 contract NGOLis 417

 contract NGOLis 422

 contract NGOLisFactory 41

 contract NGOLisFactory 45

 contract NGOLisFactory 49

 contract NGOLisFactory 54

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLisFactory.sol

NGOLisFactory.sol

NGOLisFactory.sol

NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L397
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L402
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L407
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L412
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L417
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L422
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L41
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L45
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L49
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L54

fINDINGS REPORT 91

Update

Client's response

Based on the response and solidity style guide we have refactored variable naming style.

All private variables have leading underscores, while all public variables without leading

underscores.

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b .

https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 92

Location

Description

In the mentioned locations, events are not emitted when state changes occur in setters.

For example, in the functions setOracle and setRewardsOwner , the addresses of oracle

and rewardOwner are updated. At the same time, when NGOLis is created in the

constructor of the NGOLisFactory contract, the NGOCreated event includes the oracle

and rewardOwner .

This results in the absence of events when addresses are updated via setters, leading to

untracked changes and outdated data in indexed tools like subgraph.

Recommendation

We recommend adding event emissions when setters are invoked.

Update

Client's response

Added event emissions in setters in NGOLis and NGOLisFactory:

setOracle

setRewardsOwner

setUserBan

setImplementation -> this function was renamed (previously setImplementetion).

I-26
Missing event emissions in setters in NGOLis , NGOLisF

actory

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function setOracle 880

 contract NGOLis > function setRewardsOwner 889

 contract NGOLis > function setUserBan 898

 contract NGOLisFactory > function setImplementetion 149

NGOLis.sol

NGOLis.sol

NGOLis.sol

NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L880
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L889
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L898
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L149

fINDINGS REPORT 93

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b .

https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 94

Location

Description

In the mentioned locations, parameter validation is missing:

In the contracts NGOLis and NGOLisFactory , the setter functions setUserBan and

setImplementetion do not validate for the zero address.

In the constructor of the NGOLisFactory contract, parameter validation is absent, unlike

the constructor of the NGOLis contract.

Recommendation

We recommend adding parameter validation at the specified locations.

Update

Client's response

Added validations in:

setImplementation -> NGOLisFactory

constructor -> NGOLisFactory

setUserBan -> NGOLis

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b

I-27
Missing parameter validation in NGOLis , NGOLisFacto

ry

Severity INFO

Status • FIXED

File Location Line

 contract NGOLis > function setUserBan 897

 contract NGOLisFactory > constructor 73

 contract NGOLisFactory > function setImplementetion 149

NGOLis.sol

NGOLisFactory.sol

NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLis.sol#L897
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L73
https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L149
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

fINDINGS REPORT 95

Location

Description

In the constructor of the NGOLisFactory contract, msg.sender is assigned as the owner :

) Ownable(msg.sender) {

Typically, the deployer role differs from the role of the user(s) maintaining the contracts.

Consequently, the deployer would likely need to transfer ownership to another address.

Recommendation

We recommend specifying the owner address at deployment time and setting a multi-

signature wallet, such as through a Safe Wallet.

Update

Client's response

Changed msg.sender to _owner variable.

Must be set up during function call.

Oxorio's response

Fixed in 51f49e43dec8b70f71fb2016c442ff05b198a35b .

I-28
Setting msg.sender as owner during deployment in N

GOLisFactory

Severity INFO

Status • FIXED

File Location Line

 contract NGOLisFactory > constructor 72NGOLisFactory.sol

https://github.com/Launchnodes-Ltd/LIS/blob/e862675353e08d83265337d1944d5d2ca6b6be31/contracts/NGOLisFactory.sol#L72
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b
https://github.com/Launchnodes-Ltd/LIS/commit/51f49e43dec8b70f71fb2016c442ff05b198a35b

APPENDIX

4

APPENDIX 97

4.1 SECURITY ASSESSMENT

METHODOLOGY

Oxorio's smart contract security audit methodology is designed to ensure the security,

reliability, and compliance of smart contracts throughout their development lifecycle. Our

process integrates the Smart Contract Security Verification Standard (SCSVS) with our

advanced techniques to address complex security challenges. For a detailed look at our

approach, please refer to the full version of our methodology. Here is a concise overview of

our auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 98

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 99

4.2 CODEBASE QUALITY

ASSESSMENT REfERENCE

The tables below describe the codebase quality assessment categories and rating criteria

used in this report.

Category Description

Access Control

Evaluates the effectiveness of mechanisms controlling access to ensure only

authorized entities can execute specific actions, critical for maintaining

system integrity and preventing unauthorized use.

Arithmetic

Focuses on the correct implementation of arithmetic operations to prevent

vulnerabilities like overflows and underflows, ensuring that mathematical

operations are both logically and semantically accurate.

Complexity

Assesses code organization and function clarity to confirm that functions and

modules are organized for ease of understanding and maintenance, thereby

reducing unnecessary complexity and enhancing readability.

Data Validation

Assesses the robustness of input validation to prevent common

vulnerabilities like overflow, invalid addresses, and other malicious input

exploits.

Decentralization

Reviews the implementation of decentralized governance structures to

mitigate insider threats and ensure effective risk management during

contract upgrades.

Documentation

Reviews the comprehensiveness and clarity of code documentation to

ensure that it provides adequate guidance for understanding, maintaining,

and securely operating the codebase.

External

Dependencies

Evaluates the extent to which the codebase depends on external protocols,

oracles, or services. It identifies risks posed by these dependencies, such as

compromised data integrity, cascading failures, or reliance on centralized

entities. The assessment checks if these external integrations have

appropriate fallback mechanisms or redundancy to mitigate risks and

protect the protocol’s functionality.

Error Handling
Reviews the methods used to handle exceptions and errors, ensuring that

failures are managed gracefully and securely.

Logging and

Monitoring

Evaluates the use of event auditing and logging to ensure effective tracking

of critical system interactions and detect potential anomalies.

Low-Level Calls

Reviews the use of low-level constructs like inline assembly, raw call or

delegatecall , ensuring they are justified, carefully implemented, and do

not compromise contract security.

APPENDIX 100

4.2.1 Rating Criteria

Category Description

Testing and

Verification

Reviews the implementation of unit tests and integration tests to verify that

codebase has comprehensive test coverage and reliable mechanisms to

catch potential issues.

Rating Description

Excellent The system is flawless and surpasses standard industry best practices.

Good
Only minor issues were detected; overall, the system adheres to established best

practices.

Fair Issues were identified that could potentially compromise system integrity.

Poor Numerous issues were identified that compromise system integrity.

Absent A critical component is absent, severely compromising system safety.

Not

Applicable
This category does not apply to the current evaluation.

APPENDIX 101

4.3 fINDINGS CLASSIfICATION

REfERENCE

4.3.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

4.3.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 102

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding and acknowledges the associated

risks. This finding may affect the overall security of the project; however,

based on the risk assessment, the team will decide whether to address it or

leave it unchanged.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 103

4.4 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

THANK YOU fOR CHOOSING

	Launchnodes Lido Impact Staking Security Audit Report
	Executive Summary
	Executive Summary
	Summary of findings

	Audit Overview
	Disclaimer
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Codebase Quality Assessment
	Findings Breakdown by File
	Conclusion

	Findings Report
	CRITICAL
	C-01 The setImplementetion function is executed without authorization in NGOLisFactory
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	C-02 Withdrawal of more ETH from the protocol than returned by Lido in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	C-03 Decrease in stETH balance due to slashing or penalties is not accounted for in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	C-04 Rounding during division leads to accumulation of undistributed rewards on the contract in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	C-05 Contract lock risk on initial stake in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	C-06 Unrestricted withdrawal of small stETH/wstETH amounts in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	MAJOR
	M-01 Underflow when attempting to withdraw asset from prevRewards in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	M-02 Incorrect update of lastNGOBalance in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	M-03 Risk of Zero Calculation for Low _ratio and _ngoAssets in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Client's response

	M-04 Underflow occurring during validator slashing events in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	M-05 Unwithdrawable balance after withdrawal in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response
	Client's response
	Oxorio's response

	WARNING
	W-01 Possible to pass a zero _amount in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	W-02 Inconsistency in the calculation of userTotalShareWithNgoReward and rewardToNgo in NGOLis
	Location
	Description
	Recommendation
	Update
	Oxorio's response

	W-03 User does not receive rewards for staking when shares == 0 in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	W-04 Possible to receive a zero amount of shares when converting non-zero assets in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	W-05 Proxy creation uses ERC1967Proxy instead of NGOLisProxy in NGOLisFactory
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response
	Client's response
	Oxorio's response

	W-06 Function __ReentrancyGuard_init is not called during initialization in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	W-07 Insufficient validation of the size of _amount for withdrawal requests in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	W-08 Users cannot withdraw stuck funds from the contract in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	W-09 Incorrect value in the WithdrawClaimed event in NGOLis
	Location
	Description
	Recommendation
	Update
	Oxorio's response
	Client's response

	W-10 StakeInfo is not updated during withdraw operations in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	W-11 Equality of minimum values for different tokens wstEth and stEth in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	W-12 Zero ratio after rounding during division in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response

	INFO
	I-01 Delay between reward distributions changes after contract initialization in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-02 Setting msg.sender instead of owner in the mapping ownerToNgo in NGOLisFactory
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-03 Inconsistency in error notification methods in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-04 No _disableInitializers call in the constructor in NGOLis
	Location
	Description
	Recommendation
	Update
	Oxorio's response

	I-05 Redundant storage of the totalAssets value in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-06 Suboptimal handling of storage variables in NGOLis
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-07 No parameter validation in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-08 Interface not used in IAccountOracle.sol
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-09 Unused variable _prevRewards in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-10 Redundant check for unsigned value being negative in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-11 Balance calculation before checking for stake existence in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Client's response

	I-12 Insufficient validation in the case of the very first stake in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-13 Event name in the specification is misleading in NGOLisFactory
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-14 Similar code in identical functions in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-15 Transfer of zero _fee is possible in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-16 No setter parameter validation in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-17 Simultaneous use of uint and uint256 types
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-18 Redundant increment operation in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-19 Suboptimal computation of user balance in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-20 Missing functionality for mistaken tokens and ETH withdrawal in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response

	I-21 Unused contracts in NGOLis.sol, NGOLisFactory.sol
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-22 Unused error in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-23 Misleading variable name wstAmount instead of stAmount in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-24 Incorrect event parameter value wstEth instead of stEth in NGOLis
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-25 Inconsistent state variable naming style in NGOLis, NGOLisFactory
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-26 Missing event emissions in setters in NGOLis, NGOLisFactory
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-27 Missing parameter validation in NGOLis, NGOLisFactory
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	I-28 Setting msg.sender as owner during deployment in NGOLisFactory
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response

	Appendix
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

