
NOVEMBER 4, 2025

LTV VAULT

CRAFT SMART

CONTRACTS

SECURITY

AUDIT REPORT

EXECUTIVE

SUMMARY1

EXECUTIVE SUMMARY 3

1.1 EXECUTIVE SUMMARY

This document presents the smart contracts security audit conducted by Oxorio for LTV

Protocol’s LTV Vault Craft.

The LTV Protocol is a revolutionary Curatorless Leveraged Tokenized Vault that maintains a

constant target Loan-To-Value (LTV) ratio without requiring a central curator. Built on the

foundation of two interconnected EIP-4626 vaults, it enables users to deposit and withdraw

funds while receiving tokenized shares representing their leveraged positions. The

protocol's core innovation lies in its auction-based stimulus system that incentivizes users to

participate in rebalancing actions through rewards or fees. This mechanism ensures

alignment with the target LTV while providing basic MEV protection against frontrunning.

Vault Craft is a collection of Solidity helper contracts that provide safe, slippage-protected

operations for ERC-4626 tokenized vaults and collateral vaults.

The audit process involved a comprehensive approach, including manual code review,

automated analysis, and extensive testing and simulations of the smart contracts to assess

the project’s security and functionality. The audit covered a total of 17 smart contracts,

encompassing 612 lines of code. The codebase was thoroughly examined, with the audit

team collaborating closely with LTV Protocol and referencing the provided documentation

to address any questions regarding the expected behavior. For an in-depth explanation of

used the smart contract security audit methodology, please refer to the Security

Assessment Methodology section of this document.

Throughout the audit, a collaborative approach was maintained with LTV Protocol to

address all concerns identified within the audit’s scope. Each issue has been either resolved

or formally acknowledged by LTV Protocol, contributing to the robustness of the project.

As a result, following a comprehensive review, our auditors have verified that the LTV Vault

Craft, as of audited commit 2a784193bb8bdc6714d161d68f3953ff2f07097c, has met the

security and functionality requirements established for this audit, based on the code and

documentation provided, and operates as intended within the defined scope.

https://ltvprotocol.github.io/papers/LTV_Curatorless_Leveraged_Tokenized_Vault_with_a_Constant_Target_Loan-To-Value_Ratio.pdf
https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

EXECUTIVE SUMMARY 4

1.2 SUMMARY OF FINDINgS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Detailed technical information on the audit findings, along with our recommendations for

addressing them, is provided in the Findings Report section for further reference.

All identified issues have been addressed, with LTV Protocol fixing them or formally

acknowledging their status.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 1 0 1 0 0

MAJOR 0 0 0 0 0

WARNING 2 0 2 0 0

INFO 0 0 0 0 0

TOTAL 3 0 3 0 0

AUDIT

OVERVIEW2

6

CONTENTS

1. EXECUTIVE SUMMARY ... 2

1.1. EXECUTIVE SUMMARY .. 3

1.2. SUMMARY OF FINDINGS .. 4

2. AUDIT OVERVIEW ... 5

2.1. DISCLAIMER ... 8

2.2. PROJECT BRIEF ... 9

2.3. PROJECT TIMELINE .. 10

2.4. AUDITED FILES ... 11

2.5. PROJECT OVERVIEW .. 12

2.6. CODEBASE QUALITY ASSESSMENT ... 13

2.7. FINDINGS BREAKDOWN BY FILE ... 15

2.8. CONCLUSION .. 16

3. AUDIT OBJECTIVES ... 17

3.1. TOKEN HANDLING AND APPROVALS ... 19

3.2. INTEGRATION WITH EXTERNAL PROTOCOLS .. 20

3.3. ACCESS CONTROL AND CALL SAFETY ... 21

3.4. REENTRANCY AND LOW-LEVEL SAFETY .. 22

3.5. DATA FLOW AND VALIDATION .. 23

3.6. TESTING AND VERIFICATION GAPS ... 24

3.7. CODE CLARITY AND MAINTAINABILITY .. 25

3.8. OUT OF SCOPE .. 26

4. FINDINGS REPORT ... 27

4.1. CRITICAL ... 28

C-01 Missing approve for token transfers to the vault in Safe4626CollateralHelper, Safe4626Helper

.. 28

7

4.2. MAJOR .. 30

4.3. WARNING ... 31

W-01 Unnecessary fallback function in CommonFlashLoanHelper ... 31

W-02 Excessive computations during conversion to wstETH in

FlashLoanMintHelperWstethAndWeth .. 32

4.4. INFO .. 33

5. APPENDIX ... 34

5.1. SECURITY ASSESSMENT METHODOLOGY .. 35

5.2. CODEBASE QUALITY ASSESSMENT REFERENCE .. 37

Rating Criteria ... 38

5.3. FINDINGS CLASSIFICATION REFERENCE ... 39

Severity Level Reference .. 39

Status Level Reference ... 39

5.4. ABOUT OXORIO ... 41

AUDIT OVERVIEW 8

2.1 DISCLAIMER

At the request of the client, Oxorio consents to the public release of this audit report. The

information contained herein is provided "as is" without any representations or warranties

of any kind. Oxorio disclaims all liability for any damages arising from or related to the use

of this audit report. Oxorio retains copyright over the contents of this report.

This report is based on the scope of materials and documentation provided to Oxorio for

the security audit as detailed in the Executive Summary and Audited Files sections. The

findings presented in this report may not encompass all potential vulnerabilities. Oxorio

delivers this report and its findings on an as-is basis, and any reliance on this report is

undertaken at the user’s sole risk. It is important to recognize that blockchain technology

remains in a developmental stage and is subject to inherent risks and flaws.

This audit does not extend beyond the programming language of smart contracts to include

areas such as the compiler layer or other components that may introduce security risks.

Consequently, this report should not be interpreted as an endorsement of any project or

team, nor does it guarantee the security of the project under review.

THE CONTENT OF THIS REPORT, INCLUDING ITS ACCESS AND/OR USE, AS WELL AS ANY

ASSOCIATED SERVICES OR MATERIALS, MUST NOT BE CONSIDERED OR RELIED UPON AS

FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER PROFESSIONAL ADVICE.

Third parties should not rely on this report for making any decisions, including the purchase

or sale of any product, service, or asset. Oxorio expressly disclaims any liability related to

the report, its contents, and any associated services, including, but not limited to, implied

warranties of merchantability, fitness for a particular purpose, and non-infringement.

Oxorio does not warrant, endorse, or take responsibility for any product or service

referenced or linked within this report.

For any decisions related to financial, legal, regulatory, or other professional advice, users

are strongly encouraged to consult with qualified professionals.

AUDIT OVERVIEW 9

2.2 PROjECT BRIEF

Title Description

Client LTV Protocol

Project name LTV Vault Craft

Category Leveraged Tokenized Vault

Website https://ltv.finance

Repository https://github.com/ltvprotocol/vault_craft/

Documentation
LTV_Curatorless_Leveraged_Tokenized_Vault_with_a_Constant_Target_Loan-To-

Value_Ratio.pdf

Initial Commit 6f82ee6d4a3fd75edbb385229e6e538d41849461

Final Commit 2a784193bb8bdc6714d161d68f3953ff2f07097c

Platform L1

Network Ethereum

Languages Solidity

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project

Manager
Elena Kozmiryuk - elena@oxor.io

https://ltv.finance
https://github.com/ltvprotocol/vault_craft/
https://ltvprotocol.github.io/papers/LTV_Curatorless_Leveraged_Tokenized_Vault_with_a_Constant_Target_Loan-To-Value_Ratio.pdf
https://ltvprotocol.github.io/papers/LTV_Curatorless_Leveraged_Tokenized_Vault_with_a_Constant_Target_Loan-To-Value_Ratio.pdf
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461
https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c
mailto:am@oxor.io
mailto:elena@oxor.io

AUDIT OVERVIEW 10

2.3 PROjECT TIMELINE

The key events and milestones of the project are outlined below.

Date Event

October 27, 2025 Client requested audit.

October 28, 2025 The audit team initiated work on the project.

October 29, 2025 Submission of the preliminary audit report #1.

October 29, 2025 Submission of the preliminary audit report #2.

November 4, 2025 Submission of the final audit report incorporating client’s verified fixes.

AUDIT OVERVIEW 11

2.4 AUDITED FILES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that

estimates logical depth and decision points like loops and conditional branches) by the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

File Lines Blanks Comments Code Complexity

1 src/CommonFlashLoanHelper.sol 52 11 1 40 10%

2 src/FlashLoanMintHelperWstethAndWeth.sol 78 21 8 49 12%

3 src/FlashLoanRedeemHelperWstethAndWeth.sol 81 18 8 55 9%

4 src/interfaces/balancer/IBalancerVault.sol 14 2 1 11 0%

5 src/interfaces/balancer/IFlashLoanRecipient.sol 13 2 1 10 0%

6 src/interfaces/ICurve.sol 9 2 2 5 0%

7 src/interfaces/IERC4626.sol 124 28 60 36 0%

8 src/interfaces/IERC4626Collateral.sol 34 14 1 19 0%

9 src/interfaces/IFlashLoanHelperErrors.sol 10 1 1 8 0%

10 src/interfaces/IFlashLoanHelperEvents.sol 7 1 1 5 0%

11 src/interfaces/IFlashLoanMintHelper.sol 10 2 1 7 0%

12 src/interfaces/ILowLevelVault.sol 14 2 1 11 0%

13 src/interfaces/tokens/IstEth.sol 12 2 1 9 0%

14 src/interfaces/tokens/IWETH.sol 9 2 1 6 0%

15 src/interfaces/tokens/IwstEth.sol 9 2 1 6 0%

16 src/Safe4626CollateralHelper.sol 71 10 1 60 7%

17 src/Safe4626Helper.sol 65 10 1 54 7%

Total 612 130 91 391 6%

https://github.com/boyter/scc
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/CommonFlashLoanHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/FlashLoanMintHelperWstethAndWeth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/FlashLoanRedeemHelperWstethAndWeth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/balancer/IBalancerVault.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/balancer/IFlashLoanRecipient.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/ICurve.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IERC4626.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IERC4626Collateral.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IFlashLoanHelperErrors.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IFlashLoanHelperEvents.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IFlashLoanMintHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/ILowLevelVault.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/tokens/IstEth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/tokens/IWETH.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/tokens/IwstEth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626CollateralHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626Helper.sol
https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 12

2.5 PROjECT OVERVIEW

Vault Craft is a collection of Solidity helper contracts that provide safe, slippage-protected

operations for ERC-4626 tokenized vaults and collateral vaults.

AUDIT OVERVIEW 13

2.6 CODEBASE QUALITY

ASSESSMENT

The Codebase Quality Assessment table offers a comprehensive assessment of various

code metrics, as evaluated by our team during the audit, to gauge the overall quality and

maturity of the project’s codebase. By evaluating factors such as complexity, documentation

and testing coverage to best practices, this table highlights areas where the project excels

and identifies potential improvement opportunities. Each metric receives an individual

rating, offering a clear snapshot of the project's current state, guiding prioritization for

refactoring efforts, and providing insights into its maintainability, security, and scalability.

For a detailed description of the categories and ratings, see the Codebase Quality

Assessment Reference section.

Category Assessment Result

Access Control

Access control mechanisms in helper contracts were

reviewed. A critical issue С-1 was identified: missing

approve for token transfers to the vault from

Safe4626CollateralHelper and Safe4626Helper . The

issue was resolved.

Excellent

Arithmetic
Arithmetic operations in the contracts were correct, with

overflow/underflow prevented via SafeMath.
Excellent

Complexity
The logic in helper contracts was moderately complex but

readable.
Excellent

Data Validation
Input data in deposit and mint functions was properly

validated (zero checks, sufficient balance).
Excellent

Decentralization
The contracts contained no centralized control elements or

owner privileges with critical impact.

Not

Applicable

Documentation

NatSpec comments were present on key functions. Full

external interface documentation was not required for

helper contracts.

Not

Applicable

External

Dependencies

Well-audited OpenZeppelin libraries (ERC20, SafeERC20)

were used.
Excellent

Error Handling
Errors were handled via require and revert with

informative messages.
Excellent

Logging and

Monitoring

Events for minting and transfers were emitted correctly.

Additional monitoring was not required.
Excellent

Low-Level Calls
Low-level calls were absent. All interactions used safe

methods from SafeERC20. No issues were present.
Excellent

AUDIT OVERVIEW 14

Category Assessment Result

Testing and

Verification

Tests covered main scenarios using mocked vault

contracts. The critical approve bug was not caught due to

mocks, but the code was retested thoroughly after the fix.

Excellent

AUDIT OVERVIEW 15

2.7 FINDINgS BREAkDOWN BY

FILE

This table provides an overview of the findings across the audited files, categorized by

severity level. It serves as a useful tool for identifying areas that may require attention,

helping to prioritize remediation efforts, and provides a clear summary of the audit results.

File TOTAL CRITICAL MAJOR WARNING INFO

src/CommonFlashLoanHelper.sol 1 0 0 1 0

src/FlashLoanMintHelperWstethAndWeth.sol 1 0 0 1 0

src/Safe4626CollateralHelper.sol 1 1 0 0 0

src/Safe4626Helper.sol 1 1 0 0 0

https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/CommonFlashLoanHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/FlashLoanMintHelperWstethAndWeth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626CollateralHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626Helper.sol

AUDIT OVERVIEW 16

2.8 CONCLUSION

A comprehensive audit was conducted on 17 smart contracts, initially revealing 1 critical and

0 major issues, along with numerous warnings notes.

The audit identified a critical vulnerability in token transfer logic within helper contracts

(Safe4626CollateralHelper and Safe4626Helper), where missing approve calls

prevented the vault from pulling assets, despite direct safeTransferFrom usage — a flaw

masked by mocked vaults in testing. Additionally, warning-level issues included an

unnecessary fallback function introducing phishing risks and inefficient wstETH wrapping

via redundant computations instead of direct Lido submission. No major or informational

issues were found beyond these. All identified problems were acknowledged, with the

critical issue resolved and warnings recommended for optimization and risk reduction.

Overall, the codebase demonstrated strong security practices in access control, arithmetic

safety, error handling, and dependency management, achieving excellent post-remediation

status across applicable categories.

Following our initial audit, LTV Protocol worked closely with our team to address the

identified issues.

The proposed changes focused on adding missing approve calls in

Safe4626CollateralHelper and Safe4626Helper to enable secure token transfers to the

vault , removing the unnecessary fallback function in CommonFlashLoanHelper to

eliminate phishing risks, and optimizing wstETH wrapping in

FlashLoanMintHelperWstethAndWeth by leveraging Lido’s direct submission mechanism to

avoid redundant and potentially inaccurate computations.

All identified issues have been successfully addressed or formally acknowledged.

As a result, the project has passed our audit. Our auditors have verified that the LTV Vault

Craft, as of audited commit 2a784193bb8bdc6714d161d68f3953ff2f07097c, operates as

intended within the defined scope, based on the information and code provided at the time

of evaluation. The robustness of the codebase has been significantly improved, meeting the

necessary security and functionality requirements established for this audit.

https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

AUDIT

OBjECTIVES3

AUDIT OBjECTIVES 18

The audit focused on identifying vulnerabilities, ensuring compliance with standards, and

verifying the correctness of the implementation for the LTV Protocol's Safe4626 helper

contracts (Safe4626CollateralHelper , Safe4626Helper , CommonFlashLoanHelper , and

FlashLoanMintHelperWstethAndWeth). The key areas of focus included:

AUDIT OBjECTIVES 19

3.1 TOkEN HANDLINg AND

APPROVALS

Review of ERC20 interactions in deposit and mint workflows, with emphasis on

safeTransferFrom usage and the necessity of prior approve calls when the helper acts

as an intermediary between user and vault .

Detection of approval bypass risks where the vault expected to pull assets from the

helper, but no approval was granted — a flaw masked by mocked vault behavior in

testing.

AUDIT OBjECTIVES 20

3.2 INTEgRATION WITH

EXTERNAL PROTOCOLS

Validation of interactions with ERC4626-compliant vaults, ensuring correct asset flow in

deposit / mint operations via helper contracts.

Assessment of Lido wstETH wrapping logic in FlashLoanMintHelperWstethAndWeth ,

identifying inefficient on-chain computation paths versus direct payable submission to

the wstETH contract.

AUDIT OBjECTIVES 21

3.3 ACCESS CONTROL AND CALL

SAFETY

Examination of function call patterns in helper contracts, including direct vault

interactions and flash loan callbacks.

Identification of unnecessary fallback functions that increased contract attack surface

and introduced phishing risks via unintended call forwarding.

AUDIT OBjECTIVES 22

3.4 REENTRANCY AND LOW-LEVEL

SAFETY

Analysis of state changes during helper operations, confirming absence of reentrancy

vectors despite external calls to vault and token contracts.

Verification that all external interactions used SafeERC20 and avoided raw call or

delegatecall .

AUDIT OBjECTIVES 23

3.5 DATA FLOW AND VALIDATION

Checks on input validation in helper functions (e.g., zero-amount guards, address sanity).

Review of flash loan payload handling and return value enforcement in Balancer-style

and Morpho-style callbacks.

AUDIT OBjECTIVES 24

3.6 TESTINg AND VERIFICATION

gAPS

Evaluation of test coverage, particularly the use of mocked ERC4626 vaults that

bypassed real safeTransferFrom enforcement, leading to undetected approval logic

flaws in production-like conditions.

AUDIT OBjECTIVES 25

3.7 CODE CLARITY AND

MAINTAINABILITY

Assessment of inline documentation, function naming, and modularity in helper

contracts.

Identification of optimization opportunities that also reduced complexity and potential

error surfaces.

AUDIT OBjECTIVES 26

3.8 OUT OF SCOPE

The following areas were explicitly excluded from the audit:

Core vault logic, leverage mechanics, or rebalancing modules outside the helper

contracts.

Full protocol-level economic risks, liquidation paths, or LTV parameter safety.

Gas optimization beyond security-critical inefficiencies.

Frontend, off-chain automation, or monitoring systems.

FINDINgS

REPORT4

FINDINgS REPORT 28

4.1 CRITICAL

Location

Description

In the mentioned locations, functions of the vault are called, where token transfers are

performed:

<token>.safeTransferFrom(msg.sender, address(this), assets);

However, within the vault , the msg.sender will be the helper contract

(Safe4626CollateralHelper or Safe4626Helper). The helper does not receive tokens

from the user and does not provide approve for the vault to transfer tokens.

It should be noted that the helper tests use mocked vault contracts, which do not perform

real safeTransferFrom calls:

#L85

#L108

C-01
Missing approve for token transfers to the vault in S

afe4626CollateralHelper , Safe4626Helper

Severity CRITICAL

Status • FIXED

File Location Line

 contract Safe4626CollateralHelper > function safeDepositColl

ateral
16

 contract Safe4626CollateralHelper > function safeMintCollate

ral
30

 contract Safe4626Helper > function safeDeposit 16

 contract Safe4626Helper > function safeMint 30

Safe4626CollateralHelper.sol

Safe4626CollateralHelper.sol

Safe4626Helper.sol

Safe4626Helper.sol

https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626CollateralHelper.sol#L16
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626CollateralHelper.sol#L30
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626Helper.sol#L16
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626Helper.sol#L30
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/test/mocks/MockERC4626Vault.sol#L85
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/test/mocks/MockERC4626Vault.sol#L108

FINDINgS REPORT 29

Recommendation

We recommend adding token transfer and approve functionality to the helper contracts

before performing deposits into the vault .

Update

Client's response

Fixed at 2a784193bb8bdc6714d161d68f3953ff2f07097c.

https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

FINDINgS REPORT 30

4.2 MAjOR

No major issues found.

FINDINgS REPORT 31

4.3 WARNINg

Location

Description

In the contract CommonFlashLoanHelper , the fallback function is unnecessary and may

introduce phishing risks, as it allows calls to non-existing functions on the contract.

Recommendation

We recommend removing the fallback function.

Update

Client's response

Fixed at 2a784193bb8bdc6714d161d68f3953ff2f07097c.

W-01
Unnecessary fallback function in

CommonFlashLoanHelper

Severity WARNING

Status • FIXED

File Location Line

 contract CommonFlashLoanHelper >

receive/fallback function
51

CommonFlashLoanHelper.sol

https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/CommonFlashLoanHelper.sol#L51
https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

FINDINgS REPORT 32

Location

Description

In the function _wrapShares of contract FlashLoanMintHelperWstethAndWeth , shares of

stETH are converted into wstETH .

However, this conversion can be performed directly in Lido by sending ETH to the wstETH

contract:

/**

* @notice Shortcut to stake ETH and auto-wrap returned stETH

*/

receive() external payable {

 uint256 shares = stETH.submit{value: msg.value}(address(0));

 _mint(msg.sender, shares);

}

Recommendation

We recommend sending the flash loan ETH directly to the wstETH contract for conversion,

avoiding extra and potentially inaccurate computations.

Update

Client's response

Fixed at 2a784193bb8bdc6714d161d68f3953ff2f07097c.

W-02
Excessive computations during conversion to wstETH

in FlashLoanMintHelperWstethAndWeth

Severity WARNING

Status • FIXED

File Location Line

 contract FlashLoanMintHelperWstethAndWeth >

function _wrapShares
71

FlashLoanMintHelperWstethAndWeth.sol

https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/FlashLoanMintHelperWstethAndWeth.sol#L71
https://github.com/lidofinance/core/blob/f7916decdddef32c404d47e8e589ee31cc713a56/contracts/0.6.12/WstETH.sol#L80
https://github.com/lidofinance/core/issues/442
https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

FINDINgS REPORT 33

4.4 INFO

No info issues found.

APPENDIX

5

APPENDIX 35

5.1 SECURITY ASSESSMENT

METHODOLOgY

Oxorio's smart contract security audit methodology is designed to ensure the security,

reliability, and compliance of smart contracts throughout their development lifecycle. Our

process integrates the Smart Contract Security Verification Standard (SCSVS) with our

advanced techniques to address complex security challenges. For a detailed look at our

approach, please refer to the full version of our methodology. Here is a concise overview of

our auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 36

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 37

5.2 CODEBASE QUALITY

ASSESSMENT REFERENCE

The tables below describe the codebase quality assessment categories and rating criteria

used in this report.

Category Description

Access Control

Evaluates the effectiveness of mechanisms controlling access to ensure only

authorized entities can execute specific actions, critical for maintaining

system integrity and preventing unauthorized use.

Arithmetic

Focuses on the correct implementation of arithmetic operations to prevent

vulnerabilities like overflows and underflows, ensuring that mathematical

operations are both logically and semantically accurate.

Complexity

Assesses code organization and function clarity to confirm that functions and

modules are organized for ease of understanding and maintenance, thereby

reducing unnecessary complexity and enhancing readability.

Data Validation

Assesses the robustness of input validation to prevent common

vulnerabilities like overflow, invalid addresses, and other malicious input

exploits.

Decentralization

Reviews the implementation of decentralized governance structures to

mitigate insider threats and ensure effective risk management during

contract upgrades.

Documentation

Reviews the comprehensiveness and clarity of code documentation to

ensure that it provides adequate guidance for understanding, maintaining,

and securely operating the codebase.

External

Dependencies

Evaluates the extent to which the codebase depends on external protocols,

oracles, or services. It identifies risks posed by these dependencies, such as

compromised data integrity, cascading failures, or reliance on centralized

entities. The assessment checks if these external integrations have

appropriate fallback mechanisms or redundancy to mitigate risks and

protect the protocol’s functionality.

Error Handling
Reviews the methods used to handle exceptions and errors, ensuring that

failures are managed gracefully and securely.

Logging and

Monitoring

Evaluates the use of event auditing and logging to ensure effective tracking

of critical system interactions and detect potential anomalies.

Low-Level Calls

Reviews the use of low-level constructs like inline assembly, raw call or

delegatecall , ensuring they are justified, carefully implemented, and do

not compromise contract security.

APPENDIX 38

5.2.1 Rating Criteria

Category Description

Testing and

Verification

Reviews the implementation of unit tests and integration tests to verify that

codebase has comprehensive test coverage and reliable mechanisms to

catch potential issues.

Rating Description

Excellent The system is flawless and surpasses standard industry best practices.

Good
Only minor issues were detected; overall, the system adheres to established best

practices.

Fair Issues were identified that could potentially compromise system integrity.

Poor Numerous issues were identified that compromise system integrity.

Absent A critical component is absent, severely compromising system safety.

Not

Applicable
This category does not apply to the current evaluation.

APPENDIX 39

5.3 FINDINgS CLASSIFICATION

REFERENCE

5.3.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

5.3.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 40

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding and acknowledges the associated

risks. This finding may affect the overall security of the project; however,

based on the risk assessment, the team will decide whether to address it or

leave it unchanged.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 41

5.4 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

THANk YOU FOR CHOOSINg

	LTV Vault Craft Smart Contracts Security Audit Report
	Executive Summary
	Executive Summary
	Summary of findings

	Audit Overview
	Disclaimer
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Codebase Quality Assessment
	Findings Breakdown by File
	Conclusion

	Audit Objectives
	Token Handling and Approvals
	Integration with External Protocols
	Access Control and Call Safety
	Reentrancy and Low-Level Safety
	Data Flow and Validation
	Testing and Verification Gaps
	Code Clarity and Maintainability
	Out of Scope

	Findings Report
	CRITICAL
	C-01 Missing approve for token transfers to the vault in Safe4626CollateralHelper, Safe4626Helper
	Location
	Description
	Recommendation
	Update
	Client's response

	MAJOR
	WARNING
	W-01 Unnecessary fallback function in CommonFlashLoanHelper
	Location
	Description
	Recommendation
	Update
	Client's response

	W-02 Excessive computations during conversion to wstETH in FlashLoanMintHelperWstethAndWeth
	Location
	Description
	Recommendation
	Update
	Client's response

	INFO

	Appendix
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

