| OX@RIO NOVEMBER 4, 2025

OX@RIO

1.1

I'Tl

X

I'Tl

CUTIVE SUMMARY

This document presents the smart contracts security audit conducted by Oxorio for LTV
Protocol's LTV Vault Craft.

The LTV Protocol is a revolutionary Curatorless Leveraged Tokenized Vault that maintains a
constant target Loan-To-Value (LTV) ratio without requiring a central curator. Built on the
foundation of two interconnected EIP-4626 vaults, it enables users to deposit and withdraw
funds while receiving tokenized shares representing their leveraged positions. The
protocol's core innovation lies in its auction-based stimulus system that incentivizes users to
participate in rebalancing actions through rewards or fees. This mechanism ensures
alignment with the target LTV while providing basic MEV protection against frontrunning.

Vault Craft is a collection of Solidity helper contracts that provide safe, slippage-protected
operations for ERC-4626 tokenized vaults and collateral vaults.

The audit process involved a comprehensive approach, including manual code review,
automated analysis, and extensive testing and simulations of the smart contracts to assess
the project's security and functionality. The audit covered a total of 17 smart contracts,
encompassing 612 lines of code. The codebase was thoroughly examined, with the audit
team collaborating closely with LTV Protocol and referencing the provided documentation
to address any questions regarding the expected behavior. For an in-depth explanation of
used the smart contract security audit methodology, please refer to the Security
Assessment Methodology section of this document.

Throughout the audit, a collaborative approach was maintained with LTV Protocol to
address all concerns identified within the audit's scope. Each issue has been either resolved
or formally acknowledged by LTV Protocol, contributing to the robustness of the project.

As a result, following a comprehensive review, our auditors have verified that the LTV Vault
Craft, as of audited commit 2a784193bb8bdc6714d161d68f3953ff2f07097¢, has met the
security and functionality requirements established for this audit, based on the code and
documentation provided, and operates as intended within the defined scope.

EXECUTIVE SUMMARY

https://ltvprotocol.github.io/papers/LTV_Curatorless_Leveraged_Tokenized_Vault_with_a_Constant_Target_Loan-To-Value_Ratio.pdf
https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

1.2 SUMMARY OF FINDINGS

The table below provides a comprehensive summary of the audit findings, categorizing each
by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Detailed technical information on the audit findings, along with our recommendations for

addressing them, is provided in the Findings Report section for further reference.

All identified issues have been addressed, with LTV Protocol fixing them or formally

acknowledging their status.

Severity TOTAL NEW
1 0
MAJOR (] 0
WARNING 2 0
INFO 0 0
TOTAL 3 0

/] criTICAL
I WARNING

Issue distribution by severity

EXECUTIVE SUMMARY

ACKNOWLEDGED NO ISSUE
0 0
0 0
0 0
0 0
0 0

I FIXED

Issue distribution by status

OX@RIO

CONTENTS

1. EXECUTIVE SUMMARY ...ttt sttt sttt sttt sbe b ene b
1.7, EXECUTIVE SUMMARY ...ttt sttt sttt ne st st sne e sneesne b snneene
1.2. SUMMARY OF FINDINGS ...c.cotiiiiiiiieitieteiie ettt sttt et re st s sneesneesne s snneene

2. AUDIT OVERVIEWooiiiiiiieeee ettt ettt ettt
2.1 DISCLAIMER ...ttt sttt st bbb b sanesbnesae s
2.2. PROJECT BRIEF ...ttt st s sbe b s sine s nne s
2.3. PROJECT TIMELINE ...eeotiiie ittt s st sr e s st 10
2.4, AUDITED FILES....ciiiiiiiiiie ettt sttt s s ne e 11
2.5. PROJECT OVERVIEW ...ttt sttt st sttt sn st st st ebe b s sneesne e 12
2.6. CODEBASE QUALITY ASSESSMENT ...ooiiiiiiiiiieitieiteeie ettt sttt st 13
2.7. FINDINGS BREAKDOWN BY FILEcocitiieiieiieitieieeie ettt sttt s 15
2.8. CONCLUSION L.ttt sa e sbe bbb sae s 16

3. AUDIT OBJECTIVES ...ttt sttt sttt b sttt st ebennen 17
3.1. TOKEN HANDLING AND APPROVALSc.c.coiiiiiiiiiiieiieietciesie ettt 19
3.2. INTEGRATION WITH EXTERNAL PROTOCOLScociiiiiiiiiiiiiieiiesieesie et 20
3.3. ACCESS CONTROL AND CALL SAFETY ...eeiitiiitiitieieiie ittt sttt st 21
3.4. REENTRANCY AND LOW-LEVEL SAFETYeiitiiiiieieiieieesieesiteieeie sttt 22
3.5. DATA FLOW AND VALIDATION ..ccooiviiiiiiniiniiiiiiiicicnicnicteiesiesie st saesaeas 23
3.6. TESTING AND VERIFICATION GAPSooiiriiiiiiiiiiiiiiicrcsceeie s 24
3.7. CODE CLARITY AND MAINTAINABILITY .oviviiiiiiiiniinininiiicnicnnncncsrcscsesneesienas 25
3.8. OUT OF SCOPE ...ttt sa e sae s 26

4. FINDINGS REPORT ...ttt 27

OX@RIO

A.2. MAJOR Lottt 30
4.3 WARNING ..ottt st sb e s sb b s 31

W-01 Unnecessary fallback function in CommonFlashLoanHelpercccceeeeiiiiiiiiiiiiiiiiiiinnnne 31

W-02 Excessive computations during conversion to wstETH in

FlashLoanMintHelperWstethANAWETLNccuiieieeieeiiieeeeeeeciiee e e eectire e e e eesavreeeeeesaaareeeeeennsaeeaeas 32

A INFO it 33

5. APPENDIX ... e 34
5.1. SECURITY ASSESSMENT METHODOLOGYcccceviiniiiiiiiiiiiniiniiniieicicsicseneneieie 35
5.2. CODEBASE QUALITY ASSESSMENT REFERENCEcccooviiiiiniininiiiiiiicnciciicic 37
RAEING CILEIIA teeuvveeeiureeeesreeeeiureeeeiseeeasseeeassseessssseeassseesssssessssssesssssessnssssesssssessssesensssessnsesessnses 38

5.3. FINDINGS CLASSIFICATION REFERENCE........cccciiiiiiiiiiiiciereieeeceeece e 39
SEVENILY LEVEI REFEIENCE 1eeiiiiiiiiieieeeeiittee e e eeiitt e e e eete e e e eestbaeeeeeessbsaeeeeeaaassaaaeeeesnsaaeaeeesnnsenes 39

STALUS LEVEI REFEIENCE. . euviteuieiriieeiiiestie ettt siee et e steesiteesiteestbeesbtesbeesabeesabeesabaesnseesaseenaseenssenns 39

5.4. ABOUT OXORIO....couiiiiiiiiiiiiniiniieieiestesie sttt sttt sr sttt sbe bttt nesnesne e 41

| OXBRIO

21 DISCLAIMER

At the request of the client, Oxorio consents to the public release of this audit report. The
information contained herein is provided "as is" without any representations or warranties
of any kind. Oxorio disclaims all liability for any damages arising from or related to the use
of this audit report. Oxorio retains copyright over the contents of this report.

This report is based on the scope of materials and documentation provided to Oxorio for
the security audit as detailed in the Executive Summary and Audited Files sections. The
findings presented in this report may not encompass all potential vulnerabilities. Oxorio
delivers this report and its findings on an as-is basis, and any reliance on this report is
undertaken at the user’s sole risk. It is important to recognize that blockchain technology
remains in a developmental stage and is subject to inherent risks and flaws.

This audit does not extend beyond the programming language of smart contracts to include
areas such as the compiler layer or other components that may introduce security risks.
Consequently, this report should not be interpreted as an endorsement of any project or
team, nor does it guarantee the security of the project under review.

THE CONTENT OF THIS REPORT, INCLUDING ITS ACCESS AND/OR USE, AS WELL AS ANY
ASSOCIATED SERVICES OR MATERIALS, MUST NOT BE CONSIDERED OR RELIED UPON AS
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER PROFESSIONAL ADVICE.
Third parties should not rely on this report for making any decisions, including the purchase
or sale of any product, service, or asset. Oxorio expressly disclaims any liability related to
the report, its contents, and any associated services, including, but not limited to, implied
warranties of merchantability, fitness for a particular purpose, and non-infringement.
Oxorio does not warrant, endorse, or take responsibility for any product or service
referenced or linked within this report.

For any decisions related to financial, legal, regulatory, or other professional advice, users
are strongly encouraged to consult with qualified professionals.

AUDIT OVERVIEW

2.2 PROJECT BRIEF

Title Description

Client LTV Protocol

Project name LTV Vault Craft

Category Leveraged Tokenized Vault

Website https:/Itv.finance

Repository https://github.com/Itvprotocol/vault craft/

LTV Curatorless Leveraged Tokenized Vault with a Constant Target Loan-To-
Value Ratio.pdf

Documentation

Initial Commit 6f82ee6d4a3fd75edbb385229e6e538d41849461
Final Commit 2a784193bb8bdc6714d161d68f3953ff2f07097¢
Platform L1

Network Ethereum

Languages Solidity

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project

Elena Kozmiryuk - elena@oxor.io
Manager

AUDIT OVERVIEW

https://ltv.finance
https://github.com/ltvprotocol/vault_craft/
https://ltvprotocol.github.io/papers/LTV_Curatorless_Leveraged_Tokenized_Vault_with_a_Constant_Target_Loan-To-Value_Ratio.pdf
https://ltvprotocol.github.io/papers/LTV_Curatorless_Leveraged_Tokenized_Vault_with_a_Constant_Target_Loan-To-Value_Ratio.pdf
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461
https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c
mailto:am@oxor.io
mailto:elena@oxor.io

2.3 PROJECT TIMELINE

The key events and milestones of the project are outlined below.

Date

October 27, 2025
October 28, 2025
October 29, 2025
October 29, 2025

November 4, 2025

Event

Client requested audit.

The audit team initiated work on the project.
Submission of the preliminary audit report #1.

Submission of the preliminary audit report #2.

Submission of the final audit report incorporating client's verified fixes.

AUDIT OVERVIEW

10

2.4 AUDITED FILES

The following table contains a list of the audited files. The scc tool was used to count the
number of lines and assess complexity of the files.

File Lines Blanks Comments Code Complexity

1 src/CommonkFlashloanHelper.sol 52 " 1 40 10%
2 src/FlashLoanMintHelperWstethAndWeth.sol 78 21 8 49 12%
3 src/FlashloanRedeemHelperWstethAndWeth.sol 81 18 8 55 9%
4 src/interfaces/balancer/IBalancerVault.sol 14 2 1 1 0%
5 src/interfaces/balancer/IFlashloanRecipient.sol 13 2 1 10 0%
6 src/interfaces/ICurve.sol 9 2 2) 0%
7 src/interfaces/IERC4626.s0l 124 28 60 36 0%
8 src/interfaces/IERC4626Collateral.sol 34 14 1 19 0%
9 src/interfaces/IFlashloanHelperErrors.sol 10 1 1 8 0%
10 src/interfaces/IFlashloanHelperEvents.sol 7 1 1 5 0%
I src/interfaces/IFlashLoanMintHelper.sol 10 2 1 7 0%
12 src/interfaces/ILowlevelVault.sol 14 2 1 1 0%
13 src/interfaces/tokens/IstEth.sol 12 2 1] 0%
14 src/interfaces/tokens/IWETH.sol 9 2 1 6 0%
15 src/interfaces/tokens/IwstEth.sol 9 2 1 6 0%
16 src/Safe4626CollateralHelper.sol 71 10 1 (] 7%
17 src/Safe4626Helper.sol 65 10 1 54 7%

Total 612 130 91 391 6%

Lines: The total number of lines in each file. This provides a quick overview of the file size
and its contents.

Blanks: The count of blank lines in the file.
Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for
understanding how much of the file is dedicated to operational elements rather than
comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by
dividing the file's total complexity (an approximation of cyclomatic complexity that
estimates logical depth and decision points like loops and conditional branches) by the
number of executable lines of code. A higher value suggests greater complexity per line,
indicating areas with concentrated logic.

AUDIT OVERVIEW

https://github.com/boyter/scc
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/CommonFlashLoanHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/FlashLoanMintHelperWstethAndWeth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/FlashLoanRedeemHelperWstethAndWeth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/balancer/IBalancerVault.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/balancer/IFlashLoanRecipient.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/ICurve.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IERC4626.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IERC4626Collateral.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IFlashLoanHelperErrors.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IFlashLoanHelperEvents.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/IFlashLoanMintHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/ILowLevelVault.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/tokens/IstEth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/tokens/IWETH.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/interfaces/tokens/IwstEth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626CollateralHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626Helper.sol
https://en.wikipedia.org/wiki/Cyclomatic_complexity

2.5 PROJECT OVERVIEW

Vault Craft is a collection of Solidity helper contracts that provide safe, slippage-protected
operations for ERC-4626 tokenized vaults and collateral vaults.

AUDIT OVERVIEW

12

QUALITY

The Codebase Quality Assessment table offers a comprehensive assessment of various
code metrics, as evaluated by our team during the audit, to gauge the overall quality and
maturity of the project’'s codebase. By evaluating factors such as complexity, documentation
and testing coverage to best practices, this table highlights areas where the project excels
and identifies potential improvement opportunities. Each metric receives an individual
rating, offering a clear snapshot of the project's current state, guiding prioritization for
refactoring efforts, and providing insights into its maintainability, security, and scalability.
For a detailed description of the categories and ratings, see the Codebase Quality
Assessment Reference section.

Category

Access Control

Arithmetic

Complexity

Data Validation

Decentralization

Documentation

External
Dependencies

Error Handling

Logging and
Monitoring

Low-Level Calls

Assessment

Access control mechanisms in helper contracts were
reviewed. A critical issue C-1 was identified: missing
approve for token transfers to the vault from
Safe4626CollateralHelper and Safe4626Helper. The
issue was resolved.

Arithmetic operations in the contracts were correct, with
overflow/underflow prevented via SafeMath.

The logic in helper contracts was moderately complex but
readable.

Input data in deposit and mint functions was properly
validated (zero checks, sufficient balance).

The contracts contained no centralized control elements or
owner privileges with critical impact.

NatSpec comments were present on key functions. Full
external interface documentation was not required for
helper contracts.

Well-audited OpenZeppelin libraries (ERC20, SafeERC20)
were used.

Errors were handled via require and revert with
informative messages.

Events for minting and transfers were emitted correctly.
Additional monitoring was not required.

Low-level calls were absent. All interactions used safe
methods from SafeERC20. No issues were present.

AUDIT OVERVIEW

Result

Not
Applicable

Not
Applicable

13

Category Assessment
. Tests covered main scenarios using mocked vault
Testing and

e contracts. The critical approve bug was not caught due to
Verification ‘
mocks, but the code was retested thoroughly after the fix.

AUDIT OVERVIEW

Result

14

2./ FINDINGS BREAKDOWN BY
FILE

This table provides an overview of the findings across the audited files, categorized by
severity level. It serves as a useful tool for identifying areas that may require attention,
helping to prioritize remediation efforts, and provides a clear summary of the audit results.

File TOTAL MAJOR WARNING INFO
src/CommonFlashlLoanHelper.sol 1 0] 0] 1 0]
src/FlashLoanMintHelperWstethAndWeth.sol 1 0 0 1 0
src/Safe4626CollateralHelper.sol 1 1 0 0 0
src/Safe4626Helper.sol 1 1 0 0 0

AUDIT OVERVIEW

15

https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/CommonFlashLoanHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/FlashLoanMintHelperWstethAndWeth.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626CollateralHelper.sol
https://github.com/ltvprotocol/vault_craft/blob/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626Helper.sol

2.8 CONCLUSION

A comprehensive audit was conducted on 17 smart contracts, initially revealing 1 critical and
0 major issues, along with numerous warnings notes.

The audit identified a critical vulnerability in token transfer logic within helper contracts
(Safed4626CollateralHelper and Safed4626Helper), where missing approve calls
prevented the vault from pulling assets, despite direct safeTransferFrom usage — a flaw
masked by mocked vaults in testing. Additionally, warning-level issues included an
unnecessary fallback function introducing phishing risks and inefficient wstETH wrapping
via redundant computations instead of direct Lido submission. No major or informational
issues were found beyond these. All identified problems were acknowledged, with the
critical issue resolved and warnings recommended for optimization and risk reduction.
Overall, the codebase demonstrated strong security practices in access control, arithmetic
safety, error handling, and dependency management, achieving excellent post-remediation
status across applicable categories.

Following our initial audit, LTV Protocol worked closely with our team to address the
identified issues.

The proposed changes focused on adding missing approve calls in
Safe4626CollateralHelper and Safe4626Helper to enable secure token transfers to the
vault, removing the unnecessary fallback function in CommonFlashLoanHelper to
eliminate phishing risks, and optimizing wstETH wrapping in
FlashLoanMintHelperWstethAndWeth by leveraging Lido's direct submission mechanism to
avoid redundant and potentially inaccurate computations.

All identified issues have been successfully addressed or formally acknowledged.

As a result, the project has passed our audit. Our auditors have verified that the LTV Vault
Craft, as of audited commit 2a784193bb8bdc6714d161d68f3953ff2f07097¢, operates as
intended within the defined scope, based on the information and code provided at the time
of evaluation. The robustness of the codebase has been significantly improved, meeting the
necessary security and functionality requirements established for this audit.

AUDIT OVERVIEW

16

https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

OX@RIO

The audit focused on identifying vulnerabilities, ensuring compliance with standards, and
verifying the correctness of the implementation for the LTV Protocol's Safe4626 helper
contracts (Safe4626CollateralHelper, Safe4626Helper, CommonFlashLoanHelper, and

FlashLoanMintHelperWstethAndWeth). The key areas of focus included:

AUDIT OBJECTIVES

18

3.1 TOKEN HANDLING AND
APPROVALS

< Review of ERC20 interactions in deposit and mint workflows, with emphasis on
safeTransferFrom usage and the necessity of prior approve calls when the helper acts

as an intermediary between user and vault.

< Detection of approval bypass risks where the vault expected to pull assets from the
helper, but no approval was granted — a flaw masked by mocked vault behavior in
testing.

AUDIT OBJECTIVES

19

N

2 INTEGRATION WITH
EXTERNAL PROTOCOLS

< Validation of interactions with ERC4626-compliant vaults, ensuring correct asset flow in
deposit/mint operations via helper contracts.

& Assessment of Lido wstETH wrapping logic in FlashLoanMintHelperWstethAndWeth,

identifying inefficient on-chain computation paths versus direct payable submission to
the wstETH contract.

AUDIT OBJECTIVES

20

3.3 ACCESS CONTROL AND CALL
SAFETY

& Examination of function call patterns in helper contracts, including direct vault
interactions and flash loan callbacks.
< |dentification of unnecessary fallback functions that increased contract attack surface

and introduced phishing risks via unintended call forwarding.

AUDIT OBJECTIVES

21

3.4 REENTRANCY AND LOW-LEVEL
SAFETY

< Analysis of state changes during helper operations, confirming absence of reentrancy
vectors despite external calls to vault and token contracts.

¢ Verification that all external interactions used SafeERC20 and avoided raw call or
delegatecall.

AUDIT OBJECTIVES

22

3.0 DATA FLOW AND VALIDATION

o Checks on input validation in helper functions (e.g., zero-amount guards, address sanity).
& Review of flash loan payload handling and return value enforcement in Balancer-style
and Morpho-style callbacks.

AUDIT OBJECTIVES

23

I'Tl

TESTING AND VERIFICATION

3.6
GAP

U

< Evaluation of test coverage, particularly the use of mocked ERC4626 vaults that
bypassed real safeTransferFrom enforcement, leading to undetected approval logic
flaws in production-like conditions.

AUDIT OBJECTIVES

24

3./ CODE CLARITY AND
MAINTAINABILITY

& Assessment of inline documentation, function naming, and modularity in helper
contracts.

< ldentification of optimization opportunities that also reduced complexity and potential
error surfaces.

AUDIT OBJECTIVES

25

3.3 OUT OF SCOPE

The following areas were explicitly excluded from the audit:

< Core vault logic, leverage mechanics, or rebalancing modules outside the helper
contracts.

& Full protocol-level economic risks, liquidation paths, or LTV parameter safety.

< Gas optimization beyond security-critical inefficiencies.

© Frontend, off-chain automation, or monitoring systems.

AUDIT OBJECTIVES

26

OX@RIO

Missing approve for token transfers to the vault in S
afed4626CollateralHelper, Safe4626Helper

C-01

Severity CRITICAL

Status * FIXED
Location
File Location Line
Safe4626CollateralHelper.sol contract Safe4626CollateralHelper > function safeDepositColl 16
ateral
Safe4626CollateralHelper.sol contract Safe4626CollateralHelper > function safeMintCollate 30
ral
Safe4626Helper.sol contract Safe4626Helper > function safeDeposit 16
Safe4626Helper.sol contract Safe4626Helper > function safeMint 30
Description

In the mentioned locations, functions of the vault are called, where token transfers are
performed:

token>.safeTransferFrom(msg.sender, address(this), assets);

However, within the vault, the msg.sender will be the helper contract
(Safe4626CollateralHelper or Safe4626Helper). The helper does not receive tokens
from the user and does not provide approve for the vault to transfer tokens.

It should be noted that the helper tests use mocked vault contracts, which do not perform
real safeTransferFrom calls:

<o
<©

FINDINGS REPORT

https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626CollateralHelper.sol#L16
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626CollateralHelper.sol#L30
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626Helper.sol#L16
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/Safe4626Helper.sol#L30
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/test/mocks/MockERC4626Vault.sol#L85
https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/test/mocks/MockERC4626Vault.sol#L108

Recommendation

We recommend adding token transfer and approve functionality to the helper contracts
before performing deposits into the vault.

Update

Client's response

Fixed at 2a784193bb8bdc6714d161d68f3953ff2f07097c.

FINDINGS REPORT

29

https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

4.2 MAJOR

No major issues found.

FINDINGS REPORT

30

4.3 WARNING

Unnecessary fallback functionin
CommonFlashLoanHelper

W-01

Severity WARNING

NES * FIXED
Location
File Location Line
CommonFlashloanHelper.sol contract CommonFlashLoanHelper > 51
receive/fallback function
Description

In the contract CommonFlashLoanHelper, the fallback function is unnecessary and may
introduce phishing risks, as it allows calls to non-existing functions on the contract.

Recommendation

We recommend removing the fallback function.

Update

Client's response

Fixed at 2a784193bb8bdc6714d161d68f3953ff2f07097c.

FINDINGS REPORT

31

https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/CommonFlashLoanHelper.sol#L51
https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

Excessive computations during conversion to wstETH
in FlashLoanMintHelperWstethAndWeth

W-02

I Severity WARNING

I Status * FIXED
Location
File Location Line
Flashl oanMintHelperWstethAndWeth.... contract FlashLoanMintHelperWstethAndWeth > 71
function _wrapShares
Description

In the function _wrapShares of contract FlashLoanMintHelperWstethAndWeth, shares of
stETH are converted into wstETH.

However, this conversion can be performed directly in Lido by sending ETH to the wstETH
contract:

receive() external payable {
uint256 shares = stETH.submit{value: msg.value}(address(@));

_mint(msg.sender, shares);

Recommendation

We recommend sending the flash loan ETH directly to the wstETH contract for conversion,
avoiding extra and potentially inaccurate computations.

Update

Client's response

Fixed at 2a784193bb8bdc6714d161d68f3953ff2f07097c.

FINDINGS REPORT 32

https://github.com/ltvprotocol/vault_craft/tree/6f82ee6d4a3fd75edbb385229e6e538d41849461/src/FlashLoanMintHelperWstethAndWeth.sol#L71
https://github.com/lidofinance/core/blob/f7916decdddef32c404d47e8e589ee31cc713a56/contracts/0.6.12/WstETH.sol#L80
https://github.com/lidofinance/core/issues/442
https://github.com/ltvprotocol/vault_craft/tree/2a784193bb8bdc6714d161d68f3953ff2f07097c

4.4 INFO

No info issues found.

FINDINGS REPORT

33

5 APPENDIX

| OX@RIO

5. 1 SECURITY ASSESSMENT
METHODOLOGY

Oxorio's smart contract security audit methodology is designed to ensure the security,
reliability, and compliance of smart contracts throughout their development lifecycle. Our
process integrates the Smart Contract Security Verification Standard (SCSVS) with our
advanced techniques to address complex security challenges. For a detailed look at our
approach, please refer to the full version of our methodology. Here is a concise overview of
our auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended
functionality and dependencies. This stage sets the foundation by reviewing documentation,
business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security
vulnerabilities. Rigorous testing and review processes are applied to ensure robustness
against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It
involves scanning and testing the code for known security weaknesses and patterns that
could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract's architecture is assessed to ensure it aligns with security best practices
and does not introduce potential vulnerabilities. This includes reviewing how the contract
integrates with external systems, its compliance with security best practices, and whether
the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business
logic as documented versus implemented in the code, and any assumptions made during
the design and development phases. It assesses if the contract's architectural design
adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights
and thorough coverage. Findings from individual auditors are cross-checked to verify
accuracy and completeness.

5. Report Consolidation

APPENDIX

)

https://docsend.com/view/yjpj6jggbqjpc5sa

Findings from all auditors are consolidated into a single, comprehensive audit report. This
report outlines potential vulnerabilities, areas for improvement, and an overall assessment
of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously
identified issues have been adequately addressed. This stage helps validate the
effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's
official website. This report includes detailed findings, recommendations for improvement,
and an executive summary of the smart contract's security status.

APPENDIX

36

QUALITY

5.2 CODEBASE
NT REFERENCE

ASSESSME

The tables below describe the codebase quality assessment categories and rating criteria
used in this report.

Category

Access Control

Arithmetic

Complexity

Data Validation

Decentralization

Documentation

External
Dependencies

Error Handling

Logging and
Monitoring

Low-Level Calls

APPENDIX

Description

Evaluates the effectiveness of mechanisms controlling access to ensure only
authorized entities can execute specific actions, critical for maintaining
system integrity and preventing unauthorized use.

Focuses on the correct implementation of arithmetic operations to prevent
vulnerabilities like overflows and underflows, ensuring that mathematical
operations are both logically and semantically accurate.

Assesses code organization and function clarity to confirm that functions and
modules are organized for ease of understanding and maintenance, thereby
reducing unnecessary complexity and enhancing readability.

Assesses the robustness of input validation to prevent common
vulnerabilities like overflow, invalid addresses, and other malicious input
exploits.

Reviews the implementation of decentralized governance structures to
mitigate insider threats and ensure effective risk management during
contract upgrades.

Reviews the comprehensiveness and clarity of code documentation to
ensure that it provides adequate guidance for understanding, maintaining,
and securely operating the codebase.

Evaluates the extent to which the codebase depends on external protocols,
oracles, or services. It identifies risks posed by these dependencies, such as
compromised data integrity, cascading failures, or reliance on centralized
entities. The assessment checks if these external integrations have
appropriate fallback mechanisms or redundancy to mitigate risks and
protect the protocol’s functionality.

Reviews the methods used to handle exceptions and errors, ensuring that
failures are managed gracefully and securely.

Evaluates the use of event auditing and logging to ensure effective tracking
of critical system interactions and detect potential anomalies.

Reviews the use of low-level constructs like inline assembly, raw call or
delegatecall, ensuring they are justified, carefully implemented, and do
not compromise contract security.

37

Category

Testing and
Verification

Description

Reviews the implementation of unit tests and integration tests to verify that
codebase has comprehensive test coverage and reliable mechanisms to
catch potential issues.

5.2.1 Rating Criteria

Rating

Good

Fair

Poor

Not
Applicable

APPENDIX

Description
The system is flawless and surpasses standard industry best practices.

Only minor issues were detected; overall, the system adheres to established best
practices.

Issues were identified that could potentially compromise system integrity.
Numerous issues were identified that compromise system integrity.

A critical component is absent, severely compromising system safety.

This category does not apply to the current evaluation.

38

5.3 FINDINGS CLASSIFICATION
REFERENCE

5.3.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

Title Description

Issues that pose immediate and significant risks, potentially leading to asset theft,
inaccessible funds, unauthorized transactions, or other substantial financial losses.
These vulnerabilities represent serious flaws that could be exploited to compromise
or control the entire contract. They require immediate attention and remediation to
secure the system and prevent further exploitation.

Issues that could cause a significant failure in the contract's functionality, potentially
necessitating manual intervention to modify or replace the contract. These
vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

MAJOR downtime, requiring substantial operational changes to restore normal performance.
While these issues do not immediately lead to financial losses, they compromise the
reliability and security of the contract, demanding prioritized attention and
remediation.

Issues that might disrupt the contract's intended logic, affecting its correct
functioning or making it vulnerable to Denial of Service (DDoS) attacks. These
problems may result in the unintended triggering of conditions, edge cases, or

WARNING . : : ' - .
interactions that could degrade the user experience or impede specific operations.
While they do not pose immediate critical risks, they could impact contract reliability
and require attention to prevent future vulnerabilities or disruptions.
Issues that do not impact the security of the project but are reported to the client's
INFO team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall
performance and maintainability.

5.3.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings
discovered by the contractor, the following statuses were assigned to the findings:

Title Description

Waiting for the project team's feedback.

APPENDIX 39

Title

FIXED

ACKNOWLEDGED

NO ISSUE

APPENDIX

Description

Recommended fixes have been applied to the project code and the identified
issue no longer affects the project's security.

The project team is aware of this finding and acknowledges the associated
risks. This finding may affect the overall security of the project; however,
based on the risk assessment, the team will decide whether to address it or
leave it unchanged.

Finding does not affect the overall security of the project and does not violate
the logic of its work.

40

5.4 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,
and security consulting. With a decade of blockchain development and five years in smart
contract auditing, our expert team delivers premier security services for projects at any
stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,
Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-
founders, recognized by the Ethereum and Web3 Foundations, lead our continuous
research to address new threats in the blockchain industry. Committed to the industry's
trust and advancement, we contribute significantly to security standards and practices
through our research and education work.

Our contacts:

& 0XOr.io

¢ ping@oxor.io
¢ Github

¢ Linkedin

¢ Twitter

APPENDIX

iy

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

THANK YOU FOR CHOOSING

OX@RIO

	LTV Vault Craft Smart Contracts Security Audit Report
	Executive Summary
	Executive Summary
	Summary of findings

	Audit Overview
	Disclaimer
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Codebase Quality Assessment
	Findings Breakdown by File
	Conclusion

	Audit Objectives
	Token Handling and Approvals
	Integration with External Protocols
	Access Control and Call Safety
	Reentrancy and Low-Level Safety
	Data Flow and Validation
	Testing and Verification Gaps
	Code Clarity and Maintainability
	Out of Scope

	Findings Report
	CRITICAL
	C-01 Missing approve for token transfers to the vault in Safe4626CollateralHelper, Safe4626Helper
	Location
	Description
	Recommendation
	Update
	Client's response

	MAJOR
	WARNING
	W-01 Unnecessary fallback function in CommonFlashLoanHelper
	Location
	Description
	Recommendation
	Update
	Client's response

	W-02 Excessive computations during conversion to wstETH in FlashLoanMintHelperWstethAndWeth
	Location
	Description
	Recommendation
	Update
	Client's response

	INFO

	Appendix
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

