
JANUARY 30, 2025

KALP NETWORK

GINI VESTING

SMART

CONTRACTS

SECURITY

AUDIT REPORT



EXECUTIVE

SUMMARY1



EXECUTIVE SUMMARY 3

1.1 EXECUTIVE SUMMARY

This document presents the smart contracts security audit conducted by Oxorio for Kalp

Network’s Gini Vesting Smart Contracts.

Kalp Network is a permissioned, cross-chain blockchain ecosystem designed to integrate

regulatory compliance directly into its architecture. It offers a modular infrastructure that

supports  both  public  and  private  sub-networks,  ensuring  scalability  and  interoperability

across various platforms. The network emphasizes adherence to data privacy laws such as

GDPR  and  incorporates  KYC  and  KYB  protocols  to  maintain  a  secure  and  compliant

environment.  Kalp Network provides tools like Kalp Studio for streamlined decentralized

application  development  and  the  Kalp  Wallet  for  managing  digital  assets  within  its

ecosystem.

Kalp  Network's  Gini  Vesting  smart  contract  is  a  token  distribution  management  system

deployed  on  the  Kalp  Network  that  controls  the  release  of  GINI  tokens  to  various

stakeholders  through  predefined  vesting  schedules.  The  contract  handles  14  distinct

allocation  groups,  implements  time-based  vesting  mechanisms  with  configurable

parameters, and ensures secure token distribution through automated claims processing

and role-based access control. Built using the Kalp SDK, the system maintains the integrity

of token distribution through comprehensive state management and event logging while

providing a transparent and automated approach to token vesting.

The  audit  process  involved  a  comprehensive  approach,  including  manual  code  review,

automated analysis, and extensive testing and simulations of the smart contracts to assess

the project’s security and functionality. The audit covered a total of 8 files, encompassing

1112  lines  of  code.  The  codebase  was  thoroughly  examined,  with  the  audit  team

collaborating closely  with Kalp Network and referencing the provided documentation to

address any questions regarding the expected behavior.  For  an in-depth explanation of

used  the  smart  contract  security  audit  methodology,  please  refer  to  the  Security

Assessment Methodology section of this document.

https://www.kalp.network/kalp-chain-kalp-sdk/


EXECUTIVE SUMMARY 4

1.2 SUMMARY Of fINDINGS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Detailed technical information on the audit findings, along with our recommendations for

addressing them, is provided in the Findings Report section for further reference.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 1 1 0 0 0

MAJOR 1 1 0 0 0

WARNING 4 4 0 0 0

INFO 4 4 0 0 0

TOTAL 10 10 0 0 0



AUDIT

OVERVIEW2



6

CONTENTS

1. EXECUTIVE SUMMARY ............................................................................................................. 2

1.1. EXECUTIVE SUMMARY ........................................................................................................ 3

1.2. SUMMARY OF FINDINGS .................................................................................................... 4

2. AUDIT OVERVIEW ..................................................................................................................... 5

2.1. DISCLAIMER ......................................................................................................................... 8

2.2. PROJECT BRIEF ..................................................................................................................... 9

2.3. PROJECT TIMELINE ............................................................................................................ 10

2.4. AUDITED FILES ................................................................................................................... 11

2.5. PROJECT OVERVIEW .......................................................................................................... 12

2.6. CODEBASE QUALITY ASSESSMENT ................................................................................. 13

2.7. FINDINGS BREAKDOWN BY FILE ..................................................................................... 15

2.8. CONCLUSION .................................................................................................................... 16

3. FINDINGS REPORT ................................................................................................................. 17

3.1. CRITICAL ............................................................................................................................. 18

C-01 Missing Check of Claim Destination Address in smartcontract.go ....................................... 18

3.2. MAJOR ................................................................................................................................ 20

M-01 VestingTotalSupply can be exceeded in smartcontract.go ................................................. 20

3.3. WARNING ........................................................................................................................... 22

W-01 Documentation mismatch in internal.go .......................................................................... 22

W-02 Missing сheck in smartcontract.go ................................................................................... 23

W-03 Incorrect event message in smartcontract.go ................................................................... 24

W-04 Hardcoded values in smartcontract.go ............................................................................. 25

3.4. INFO .................................................................................................................................... 27

I-01 CompositeKey not used in models.go ................................................................................ 27

I-02 Unrecommended method usage in models.go ................................................................... 28



7

I-03 Potential documentation mismatch in smartcontract.go ..................................................... 29

I-04 Error ignored .................................................................................................................... 31

4. APPENDIX ................................................................................................................................. 32

4.1. SECURITY ASSESSMENT METHODOLOGY ...................................................................... 33

4.2. CODEBASE QUALITY ASSESSMENT REFERENCE ............................................................ 35

Rating Criteria ......................................................................................................................... 36

4.3. FINDINGS CLASSIFICATION REFERENCE ......................................................................... 37

Severity Level Reference .......................................................................................................... 37

Status Level Reference ............................................................................................................. 37

4.4. ABOUT OXORIO ................................................................................................................. 39



AUDIT OVERVIEW 8

2.1 DISCLAIMER

At the request of the client, Oxorio consents to the public release of this audit report. The

information contained herein is provided "as is" without any representations or warranties

of any kind. Oxorio disclaims all liability for any damages arising from or related to the use

of this audit report. Oxorio retains copyright over the contents of this report.

This report is based on the scope of materials and documentation provided to Oxorio for

the security  audit  as detailed in the Executive Summary and Audited Files sections.  The

findings presented in this report may not encompass all  potential  vulnerabilities.  Oxorio

delivers this report and its findings on an as-is  basis,  and any reliance on this report is

undertaken at the user’s sole risk. It is important to recognize that blockchain technology

remains in a developmental stage and is subject to inherent risks and flaws.

This audit does not extend beyond the programming language of smart contracts to include

areas such as the compiler layer or other components that may introduce security risks.

Consequently, this report should not be interpreted as an endorsement of any project or

team, nor does it guarantee the security of the project under review.

THE CONTENT OF THIS REPORT,  INCLUDING ITS ACCESS AND/OR USE,  AS WELL AS ANY

ASSOCIATED SERVICES OR MATERIALS, MUST NOT BE CONSIDERED OR RELIED UPON AS

FINANCIAL,  INVESTMENT,  TAX,  LEGAL,  REGULATORY,  OR  OTHER  PROFESSIONAL  ADVICE.

Third parties should not rely on this report for making any decisions, including the purchase

or sale of any product, service, or asset. Oxorio expressly disclaims any liability related to

the report, its contents, and any associated services, including, but not limited to, implied

warranties  of  merchantability,  fitness  for  a  particular  purpose,  and  non-infringement.

Oxorio  does  not  warrant,  endorse,  or  take  responsibility  for  any  product  or  service

referenced or linked within this report.

For any decisions related to financial, legal, regulatory, or other professional advice, users

are strongly encouraged to consult with qualified professionals.



AUDIT OVERVIEW 9

2.2 PROJECT BRIEf

Title Description

Client Kalp Network

Project name Kalp Gini Vesting Smart Contracts

Category Vesting

Website www.kalp.network

Documentation kalp-network.gitbook.io/gini-smartcontracts-documentation

Repository github.com/p2eengineering/gini-vesting-contract

Initial Commit 0129335c2067f7b836c69e84653efc6957b4f7d5

Platform L1

Network Kalp Network

Languages Go

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project Manager Nataly Demidova - nataly@oxor.io

https://kalp.network
https://kalp-network.gitbook.io/gini-smartcontracts-documentation
https://github.com/p2eengineering/gini-vesting-contract
https://github.com/p2eengineering/gini-vesting-contract/commit/0129335c2067f7b836c69e84653efc6957b4f7d5
https://github.com/p2eengineering/gini-vesting-contract/commit/0129335c2067f7b836c69e84653efc6957b4f7d5
mailto:am@oxor.io
mailto:nataly@oxor.io


AUDIT OVERVIEW 10

2.3 PROJECT TIMELINE

The key events and milestones of the project are outlined below.

Date Event

December 26, 2024 Client engaged Oxorio requesting an audit.

January 15, 2025 The audit team initiated work on the project.

January 30, 2025 Submission of the comprehensive audit report.



AUDIT OVERVIEW 11

2.4 AUDITED fILES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding  how  much  of  the  file  is  dedicated  to  operational  elements  rather  than

comments or whitespace.

Complexity:  This  column shows the file  complexity  per  line  of  code.  It  is  calculated by

dividing  the  file's  total  complexity  (an  approximation  of  cyclomatic  complexity that

estimates  logical  depth and decision points  like  loops and conditional  branches)  by  the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

File Lines Blanks Comments Code Complexity

1 vesting/constants.go 60 6 1 53 0

2 vesting/errors.go 93 19 0 74 3

3 vesting/events.go 115 20 0 95 17

4 vesting/helpers.go 102 23 0 79 16

5 vesting/internal.go 201 47 0 154 27

6 vesting/models.go 256 52 0 204 28

7 vesting/smartcontract.go 596 144 0 452 31

8 vesting/variables.go 1 0 0 1 0

Total 1424 311 1 1112 24

https://github.com/boyter/scc
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/constants.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/errors.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/events.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/helpers.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/internal.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/models.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/variables.go
https://en.wikipedia.org/wiki/Cyclomatic_complexity


AUDIT OVERVIEW 12

2.5 PROJECT OVERVIEW

The Gini Vesting smart contract implements a token vesting mechanism for the GINI token

distribution  on  the  Kalp  Network.  The  contract  manages  various  vesting  schedules  for

different stakeholder groups including team members, foundation, advisors, and investors.

The core functionality includes:

Token distribution management across 14 distinct allocation groups

Configurable vesting periods with cliff periods and TGE (Token Generation Event)

percentages

Automated vesting schedule calculations and token release mechanisms

Beneficiary management system with claim verification

Integration with the GINI token contract for transfer operations

The contract utilizes the Kalp SDK for blockchain interactions and implements key security

features such as:

Role-based access control with Kalp Foundation as the administrator

Address validation for both users and contracts

State management safeguards

Event emission for tracking vesting activities

Key  components  of  the  vesting  mechanism  are  implemented  in  the  main  contract  file

vesting/smartcontract.go  which  handles  initialization,  beneficiary  management,  and

claim processing.

The  vesting  schedules  are  enforced  through  a  time-based  calculation  system

vesting/internal.go  that determines claimable amounts based on elapsed intervals and

initial unlock percentages.

The project follows a modular architecture with separate components for:

Core vesting logic

State management

Event handling

Helper functions

Access control

The contract is designed to operate within the Kalp Network ecosystem, utilizing its native

transaction context interface for blockchain interactions and state management.

This  implementation  serves  as  the  foundation  for  GINI  token's  distribution  strategy,

ensuring transparent and automated token release according to predefined schedules while

maintaining security and auditability through comprehensive event logging.



AUDIT OVERVIEW 13

2.6 CODEBASE QUALITY

ASSESSMENT

The  Codebase  Quality  Assessment  table  offers  a  comprehensive  assessment  of  various

code metrics, as evaluated by our team during the audit, to gauge the overall quality and

maturity of the project’s codebase. By evaluating factors such as complexity, documentation

and testing coverage to best practices, this table highlights areas where the project excels

and  identifies  potential  improvement  opportunities.  Each  metric  receives  an  individual

rating,  offering  a  clear  snapshot  of  the  project's  current  state,  guiding  prioritization  for

refactoring efforts, and providing insights into its maintainability, security, and scalability.

For  a  detailed  description  of  the  categories  and  ratings,  see  the  Codebase  Quality

Assessment Reference section.

Category Assessment Result

Access Control

The project's codebase implements a robust access control

mechanism with multiple differentiated roles to manage

system functionalities efficiently. However, a critical

vulnerability was identified due to the lack of proper

authorization checks for token claims, as highlighted in

issue C-01. Addressing this flaw is essential to prevent

unauthorized access and ensure system security.

Fair

Arithmetic

The project has no identified issues related to inadequate

handling of arithmetic operations. All arithmetic operations

are executed and verified correctly.

Excellent

Complexity
The contract appears well-structured; however, attention

should be paid to removing hardcoded values. (W-04)
Good

Data Validation

The project performs data validation across many

components; however, there are gaps in validation under

certain conditions. Detailed attention is required to address

issue W-02.

Good

Decentralization
Contract management is role-based; a decentralized

approach is not applicable here.

Not

Applicable

Documentation

Documentation regarding functionality and limitations was

provided, and it is highly helpful in understanding the

codebase and its functionality effectively.

Excellent

External

Dependencies

The project does not interact with any external smart

contracts in its logic; therefore, this metric is not applicable

in this context.

Not

Applicable



AUDIT OVERVIEW 14

Category Assessment Result

Error Handling

The project demonstrates robust exception handling

throughout the codebase, utilizing custom errors with clear

naming and descriptions. However, a few minor issues

related to error handling (I-04) have been identified.

Good

Logging and

Monitoring

The project exhibits excellent logging capabilities, recording

all important events within the system.
Excellent

Low-Level Calls

The project is free from low-level calls, ensuring a higher

level of security by avoiding potential pitfalls associated with

direct, low-level interactions with the blockchain.

Not

Applicable

Testing and

Verification

Working tests were provided for the codebase, with a

coverage of 80%, which is generally sufficient. However, not

all edge cases are thoroughly tested, as indicated by the

identified issues. Expanding test cases to cover these

scenarios would enhance the robustness and reliability of

the system.

Good



AUDIT OVERVIEW 15

2.7 fINDINGS BREAKDOWN BY

fILE

This  table  provides  an  overview of  the  findings  across  the  audited  files,  categorized by

severity level.  It  serves as a useful  tool  for identifying areas that may require attention,

helping to prioritize remediation efforts, and provides a clear summary of the audit results.

File TOTAL CRITICAL MAJOR WARNING INFO

vesting/smartcontract.go 7 1 1 3 2

vesting/internal.go 2 0 0 1 1

vesting/models.go 2 0 0 0 2

vesting/helpers.go 1 0 0 0 1

https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/internal.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/models.go
https://github.com/p2eengineering/gini-vesting-contract/blob/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/helpers.go


AUDIT OVERVIEW 16

2.8 CONCLUSION

A  comprehensive  audit  was  conducted  on  the  vesting  contract  codebase,  identifying  1

critical and 1 major issue, along with numerous warnings and informational notes. The audit

revealed potential  security  risks  and logical  flaws,  including  the  ability  for  unauthorized

parties  to  claim  tokens  on  behalf  of  a  beneficiary  and  the  possibility  of  exceeding  the

vestingTotalSupply ,  leading  to  improper  token  distribution.  Additional  concerns  were

identified in documentation mismatches, missing validation checks, incorrect event logging,

and the presence of hardcoded values, which could hinder the maintainability and security

of the smart contract.

The proposed changes focus on enforcing strict validation for claim destination addresses,

preventing  excess  allocations,  aligning  documentation  with  code  behavior,  and

consolidating  contract  parameters  for  better  maintainability.  Implementing  these

recommendations  is  crucial  to  ensure  the  integrity  of  the  vesting  mechanism  and  to

enhance the overall security and reliability of the smart contract. Addressing these issues

will mitigate potential risks and improve compliance with industry best practices.



fINDINGS

REPORT3



fINDINGS REPORT 18

3.1 CRITICAL

Location

Description

In the function ClaimAll , tokens are transferred to a specific address from all allocations

associated with that beneficiary:

func (s *SmartContract) ClaimAll(ctx kalpsdk.TransactionContextInterface, beneficiary 

string) error {

  if !IsUserAddressValid(beneficiary) {

    return ErrInvalidUserAddress(beneficiary)

  }

  signer, err := GetUserId(ctx)

  userVestingList, err := GetUserVesting(ctx, beneficiary)

  // ...

  err = TransferGiniTokens(ctx, signer, totalClaimAmount.String())

  return err

}

After calculating all tokens available for claim, they are transferred to the signer  address.

However, there is no check to ensure that the signer  address matches the beneficiary

C-01
Missing Check of Claim Destination Address in smartco

ntract.go

Severity CRITICAL

Status • NEW

File Location Line

 function ClaimAll 275smartcontract.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go#L275


fINDINGS REPORT 19

address or that the beneficiary  has given any approval for the signer  to withdraw their

tokens. This allows anyone to withdraw tokens belonging to the beneficiary  to their own

address.

Recommendation

We  recommend  refactoring  the  ClaimAll  function  logic  to  ensure  that  the  claim

destination address either matches the beneficiary  address or is explicitly approved by

the beneficiary .



fINDINGS REPORT 20

3.2 MAJOR

Location

Description

In the function AddBeneficiaries , new beneficiaries are added to the vesting contract:

func (s *SmartContract) AddBeneficiaries(...) error {

  // ...

  vestingTotalSupply, ok := new(big.Int).SetString(vestingPeriod.TotalSupply, 10)

  if vestingTotalSupply.Cmp(totalAllocations) < 0 {

    return ErrTotalSupplyReached(vestingID)

  }

  vestingTotalSupply.Sub(vestingTotalSupply, totalAllocations)

  EmitBeneficiariesAdded(ctx, vestingID, totalAllocations.String())

  return nil

  }

At  the  last  step  of  the  AddBeneficiaries  function,  there  is  a  check  to  ensure  that

totalAllocations  is  less  than  or  equal  to  vestingTotalSupply ,  which  is  set  during

initialization for each vesting ID. However, after this check, the vestingTotalSupply  value

M-01
VestingTotalSupply  can be exceeded in smartcont

ract.go

Severity MAJOR

Status • NEW

File Location Line

 function AddBeneficiaries 130smartcontract.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go#L130


fINDINGS REPORT 21

is reduced by totalAllocations  but not saved back to the contract's storage. This allows

the AddBeneficiaries  function to be called again for the same vesting ID,  passing the

vestingTotalSupply.Cmp(totalAllocations) < 0  check each time, potentially resulting

in totalAllocations  across multiple calls exceeding vestingTotalSupply . This can lead

to token distribution errors,  where beneficiaries  of  a  particular  vesting  ID receive  more

tokens than allocated, while other vesting IDs are left short of tokens.

Additionally,  in  the  Initialize  function,  when  a  beneficiary  is  added  for  the

EcosystemReserve ,  the vestingTotalSupply  storage variable is  not updated. This may

result in a similar issue for the EcosystemReserve  vesting ID.

Recommendation

We recommend refactoring the AddBeneficiaries  function to ensure that repeated calls

cannot  exceed  the  vestingTotalSupply  set  during  the  Initialize  function  for  each

vesting ID.



fINDINGS REPORT 22

3.3 WARNING

Location

Description

In  the  function  validateNSetVesting ,  a  variable  of  the  VestingPeriod  struct  type  is

initialized:

  vestingPeriod := &VestingPeriod{

    TotalSupply:         totalSupply,

    CliffStartTimestamp: startTimestamp,

    StartTimestamp:      startTimestamp + cliffDuration,

    EndTimestamp:        startTimestamp + duration + cliffDuration,

    Duration:            duration,

    TGE:                 tge,

  }

The  TGE  field  in  the  VestingPeriod  struct  type  is  used  in  the  code  to  represent  the

percentage of tokens unlocked at the Token Generation Event (TGE) moment. However, the

documentation describes the TGE  field in the VestingPeriod  struct as: "The timestamp of

the  Token  Generation  Event  (TGE)."  This  discrepancy  between  the  implementation  and

documentation creates confusion about the purpose and behavior of the TGE  field.

Recommendation

We  recommend  resolving  the  mismatch  between  the  documentation  and  the  code

implementation to ensure consistency and clarity in the project. Update either the code or

the documentation to reflect the accurate meaning of the TGE  field in the VestingPeriod

struct.

W-01 Documentation mismatch in internal.go

Severity WARNING

Status • NEW

File Location Line

 function validateNSetVesting 48internal.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/internal.go#L48


fINDINGS REPORT 23

Location

Description

In the function Initialize , there is a check ensuring that the startTimestamp  parameter

value is not zero:

func (s *SmartContract) Initialize(ctx kalpsdk.TransactionContextInterface, startTimestamp 

uint64) error {

  logger := kalpsdk.NewLogger()

  logger.Infoln("Initialize Invoked.... with arguments ", startTimestamp)

  if startTimestamp == 0 {

    return ErrCannotBeZero

  }

  // ...

}

However, the startTimestamp  parameter value can still be less than currentTimestamp .

This creates a potential  issue where startTimestamp  can be set in the past,  leading to

tokens being partially or fully unlocked at the time of vesting initialization.

Recommendation

We recommend adding a check to ensure that startTimestamp >= currentTimestamp  to

prevent premature token unlocking during the initialization of vesting.

W-02 Missing сheck in smartcontract.go

Severity WARNING

Status • NEW

File Location Line

 function Initialize 19smartcontract.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go#L19


fINDINGS REPORT 24

Location

Description

In  the  function  ClaimAll ,  the  logger  creates  a  log  message  about  the  invocation  of

ClaimAll :

func (s *SmartContract) ClaimAll(ctx kalpsdk.TransactionContextInterface, beneficiary 

string) error {

  logger := kalpsdk.NewLogger()

  logger.Infoln("GetVestingData Invoked.... with arguments ", beneficiary)

  // ...

}

However,  the  log  message  is  incorrect  and  refers  to  a  different  function,  leading  to

confusion and inaccurate event tracking.

Recommendation

We  recommend  updating  the  log  message  to  accurately  reflect  the  ClaimAll  function

invocation, ensuring clarity and consistency in event logging.

W-03 Incorrect event message in smartcontract.go

Severity WARNING

Status • NEW

File Location Line

 function ClaimAll 269smartcontract.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go#L269


fINDINGS REPORT 25

Location

Description

In the function Initialize , multiple vesting IDs are initialized with hardcoded values:

validateNSetVesting(ctx, Team.String(), 30*12*24*60*60, startTimestamp, 30*24*24*60*60, 

ConvertGiniToWei(300000000), 0)

validateNSetVesting(ctx, Foundation.String(), 0, startTimestamp, 30*12*24*60*60, 

ConvertGiniToWei(220000000), 0)

validateNSetVesting(ctx, PrivateRound1.String(), 30*12*24*60*60, startTimestamp, 

30*12*24*60*60, ConvertGiniToWei(200000000), 0)

validateNSetVesting(ctx, PrivateRound2.String(), 30*6*24*60*60, startTimestamp, 

30*12*24*60*60, ConvertGiniToWei(60000000), 0)

validateNSetVesting(ctx, Advisors.String(), 30*9*24*60*60, startTimestamp, 30*12*24*60*60, 

ConvertGiniToWei(30000000), 0)

validateNSetVesting(ctx, KOLRound.String(), 30*3*24*60*60, startTimestamp, 30*6*24*60*60, 

ConvertGiniToWei(30000000), 25)

validateNSetVesting(ctx, Marketing.String(), 30*1*24*60*60, startTimestamp, 30*18*24*60*60, 

ConvertGiniToWei(80000000), 10)

validateNSetVesting(ctx, StakingRewards.String(), 30*3*24*60*60, startTimestamp, 

30*24*24*60*60, ConvertGiniToWei(180000000), 0)

validateNSetVesting(ctx, EcosystemReserve.String(), 0, startTimestamp, 30*150*24*60*60, 

ConvertGiniToWei(560000000), 2)

validateNSetVesting(ctx, Airdrop.String(), 30*6*24*60*60, startTimestamp, 30*9*24*60*60, 

ConvertGiniToWei(80000000), 10)

validateNSetVesting(ctx, LiquidityPool.String(), 0, startTimestamp, 30*6*24*60*60, 

ConvertGiniToWei(200000000), 25)

validateNSetVesting(ctx, PublicAllocation.String(), 30*3*24*60*60, startTimestamp, 

30*6*24*60*60, ConvertGiniToWei(60000000), 25)

W-04 Hardcoded values in smartcontract.go

Severity WARNING

Status • NEW

File Location Line

 function Initialize 48-59smartcontract.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go#L48-L59


fINDINGS REPORT 26

These  values  should  be  stored  in  a  dedicated  constants.go  file  along  with  other

parameters of the vesting contract. Hardcoded values scattered across different project files

make  auditing  and  maintenance  challenging,  leading  to  potential  errors  when updating

parameters, as it becomes difficult to locate and modify all instances.

Recommendation

We recommend consolidating all parameters of the vesting contract into a constants.go

file to enhance readability, maintainability, and adherence to good coding practices.



fINDINGS REPORT 27

3.4 INfO

Location

Description

In the function SetVestingPeriod  and various other locations within the models.go  file,

the fmt.Sprintf  method is used to create keys for storing values in contract storage:

func SetVestingPeriod(ctx kalpsdk.TransactionContextInterface, vestingID string, vesting 

*VestingPeriod) error {

  vestingKey := fmt.Sprintf("vestingperiod_%s", vestingID)

  // ...

However, the ctx.CreateCompositeKey  method is specifically designed for generating keys

in  a  structured  and  consistent  manner.  CreateCompositeKey  combines  the  provided

attributes  to  form  a  composite  key  that  can  be  directly  used  with  PutState()  and

related methods.

Recommendation

We recommend replacing fmt.Sprintf  with ctx.CreateCompositeKey  to generate keys.

This approach ensures consistent key creation, improves readability, and aligns with best

practices for using the framework's built-in methods.

I-01 CompositeKey  not used in models.go

Severity INFO

Status • NEW

File Location Line

 function SetVestingPeriod 112models.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/models.go#L112


fINDINGS REPORT 28

Location

Description

In the function SetVestingPeriod  and various other locations within the models.go  file,

the PutStateWithoutKYC  method is used to store data in the contract storage:

func SetVestingPeriod(...) error {

  // ...

  err = ctx.PutStateWithoutKYC(vestingKey, vestingAsBytes)

  if err != nil {

    return NewCustomError(http.StatusInternalServerError, "failed to set vesting", err)

  }

  // ...

}

However, according to the documentation, it is recommended to use PutStateWithKYC , as

this  method  enforces  KYC  restrictions,  adding  an  extra  layer  of  security  to  contract

operations.  The current usage of  PutStateWithoutKYC  bypasses this  important security

measure.

Recommendation

We  recommend  replacing  PutStateWithoutKYC  with  PutStateWithKYC  to  enforce  KYC

restrictions and ensure enhanced security in contract operations.

I-02 Unrecommended method usage in models.go

Severity INFO

Status • NEW

File Location Line

 function SetVestingPeriod 118models.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/models.go#L118


fINDINGS REPORT 29

Location

Description

In the function CalculateClaimAmount , the claimable token amount is calculated based on

the current timestamp:

func (s *SmartContract) CalculateClaimAmount(...) (string, error) {

  // ...

  if uint64(currentTime.Seconds) <= vestingPeriod.CliffStartTimestamp {

    return "0", nil

  }

  // ...

  claimAmount := new(big.Int)

  claimAmount.Add(claimableAmount, initialUnlock)

  claimAmount.Sub(claimAmount, beneficiaryClaimedAmount)

  // ...

  return claimAmount.String(), nil

}

In the current implementation, initialUnlock  tokens are distributed to the beneficiary

immediately at the start of the cliff period (without waiting for the end of the cliff period).

However, the documentation states: "Time-Based Validation: If the current time is before

the cliff period, return 0" — which could imply either the start or the end of the cliff period.

If the intention is the start of the cliff period, the implementation is correct; otherwise, the

tokens should only be distributed after the cliff period ends.

I-03
Potential documentation mismatch in smartcontract.

go

Severity INFO

Status • NEW

File Location Line

 function CalculateClaimAmount 206smartcontract.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go#L206


fINDINGS REPORT 30

Recommendation

We recommend verifying the documentation's intended meaning and either updating the

documentation or modifying the implementation to align with the expected behavior.



fINDINGS REPORT 31

Location

Description

In the mentioned locations, the returned error is ignored and not processed. While this does

not currently lead to issues, ignoring errors is a poor programming practice and could result

in undesirable consequences.

Recommendation

We recommend processing all returned errors to improve the security and stability of the

codebase.

I-04 Error ignored

Severity INFO

Status • NEW

File Location Line

 function CalculateClaimAmount 204

 function Claim 553

 function addBeneficiary 84

 function TransferGiniTokens 194

 function IsContractAddressValid 41

 function IsUserAddressValid 51

smartcontract.go

smartcontract.go

internal.go

internal.go

helpers.go

helpers.go

https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go#L204
https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/smartcontract.go#L553
https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/internal.go#L84
https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/internal.go#L194
https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/helpers.go#L41
https://github.com/p2eengineering/gini-vesting-contract/tree/0129335c2067f7b836c69e84653efc6957b4f7d5/vesting/helpers.go#L51


APPENDIX

4



APPENDIX 33

4.1 SECURITY ASSESSMENT

METhODOLOGY

Oxorio's  smart  contract  security  audit  methodology  is  designed  to  ensure  the  security,

reliability, and compliance of smart contracts throughout their development lifecycle. Our

process  integrates  the  Smart  Contract  Security  Verification  Standard  (SCSVS)  with  our

advanced techniques to address complex security challenges.  For a detailed look at  our

approach, please refer to the full version of our methodology. Here is a concise overview of

our auditing process:

1. Project Architecture Review

All  necessary  information  about  the  smart  contract  is  gathered,  including  its  intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This  phase  involves  a  deep  dive  into  the  smart  contract's  code  to  identify  security

vulnerabilities.  Rigorous  testing  and review processes  are  applied  to  ensure  robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the  design  and  development  phases.  It  assesses  if  the  contract's  architectural  design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and  thorough  coverage.  Findings  from  individual  auditors  are  cross-checked  to  verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa


APPENDIX 34

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified  issues  have  been  adequately  addressed.  This  stage  helps  validate  the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.



APPENDIX 35

4.2 CODEBASE QUALITY

ASSESSMENT REfERENCE

The tables below describe the codebase quality assessment categories and rating criteria

used in this report.

Category Description

Access Control

Evaluates the effectiveness of mechanisms controlling access to ensure only

authorized entities can execute specific actions, critical for maintaining

system integrity and preventing unauthorized use.

Arithmetic

Focuses on the correct implementation of arithmetic operations to prevent

vulnerabilities like overflows and underflows, ensuring that mathematical

operations are both logically and semantically accurate.

Complexity

Assesses code organization and function clarity to confirm that functions and

modules are organized for ease of understanding and maintenance, thereby

reducing unnecessary complexity and enhancing readability.

Data Validation

Assesses the robustness of input validation to prevent common

vulnerabilities like overflow, invalid addresses, and other malicious input

exploits.

Decentralization

Reviews the implementation of decentralized governance structures to

mitigate insider threats and ensure effective risk management during

contract upgrades.

Documentation

Reviews the comprehensiveness and clarity of code documentation to

ensure that it provides adequate guidance for understanding, maintaining,

and securely operating the codebase.

External

Dependencies

Evaluates the extent to which the codebase depends on external protocols,

oracles, or services. It identifies risks posed by these dependencies, such as

compromised data integrity, cascading failures, or reliance on centralized

entities. The assessment checks if these external integrations have

appropriate fallback mechanisms or redundancy to mitigate risks and

protect the protocol’s functionality.

Error Handling
Reviews the methods used to handle exceptions and errors, ensuring that

failures are managed gracefully and securely.

Logging and

Monitoring

Evaluates the use of event auditing and logging to ensure effective tracking

of critical system interactions and detect potential anomalies.

Low-Level Calls

Reviews the use of low-level constructs like inline assembly, raw call  or 

delegatecall , ensuring they are justified, carefully implemented, and do

not compromise contract security.



APPENDIX 36

4.2.1 Rating Criteria

Category Description

Testing and

Verification

Reviews the implementation of unit tests and integration tests to verify that

codebase has comprehensive test coverage and reliable mechanisms to

catch potential issues.

Rating Description

Excellent The system is flawless and surpasses standard industry best practices.

Good
Only minor issues were detected; overall, the system adheres to established best

practices.

Fair Issues were identified that could potentially compromise system integrity.

Poor Numerous issues were identified that compromise system integrity.

Absent A critical component is absent, severely compromising system safety.

Not

Applicable
This category does not apply to the current evaluation.



APPENDIX 37

4.3 fINDINGS CLASSIfICATION

REfERENCE

4.3.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

4.3.2 Status Level Reference

Based  on  the  feedback  received  from  the  client's  team  regarding  the  list  of  findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.



APPENDIX 38

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding and acknowledges the associated

risks. This finding may affect the overall security of the project; however,

based on the risk assessment, the team will decide whether to address it or

leave it unchanged.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.



APPENDIX 39

4.4 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract  auditing,  our expert  team delivers premier security  services for  projects  at  any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible,  and deBridge,  prioritizing  excellence  and long-term client  relationships.  Our  co-

founders,  recognized  by  the  Ethereum  and  Web3  Foundations,  lead  our  continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust  and  advancement,  we  contribute  significantly  to  security  standards  and  practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio


ThANK YOU fOR ChOOSING


	Kalp Network Gini Vesting Smart Contracts Security Audit Report
	Executive Summary
	Executive Summary
	Summary of findings

	Audit Overview
	Disclaimer
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Codebase Quality Assessment
	Findings Breakdown by File
	Conclusion

	Findings Report
	CRITICAL
	C-01 Missing Check of Claim Destination Address in smartcontract.go
	Location
	Description
	Recommendation


	MAJOR
	M-01 VestingTotalSupply can be exceeded in smartcontract.go
	Location
	Description
	Recommendation


	WARNING
	W-01 Documentation mismatch in internal.go
	Location
	Description
	Recommendation

	W-02 Missing сheck in smartcontract.go
	Location
	Description
	Recommendation

	W-03 Incorrect event message in smartcontract.go
	Location
	Description
	Recommendation

	W-04 Hardcoded values in smartcontract.go
	Location
	Description
	Recommendation


	INFO
	I-01 CompositeKey not used in models.go
	Location
	Description
	Recommendation

	I-02 Unrecommended method usage in models.go
	Location
	Description
	Recommendation

	I-03 Potential documentation mismatch in smartcontract.go
	Location
	Description
	Recommendation

	I-04 Error ignored
	Location
	Description
	Recommendation



	Appendix
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio



