
JANUARY 30, 2025

KALP NETWORK

ACCOUNTING

SMART

CONTRACTS

SECURITY

AUDIT REPORT

EXECUTIVE

SUMMARY1

EXECUTIVE SUMMARY 3

1.1 EXECUTIVE SUMMARY

This document presents the smart contracts security audit conducted by Oxorio for Kalp

Network’s Accounting Smart Contracts.

Kalp Network is a permissioned, cross-chain blockchain ecosystem designed to integrate

regulatory compliance directly into its architecture. It offers a modular infrastructure that

supports both public and private sub-networks, ensuring scalability and interoperability

across various platforms. The network emphasizes adherence to data privacy laws such as

GDPR and incorporates KYC and KYB protocols to maintain a secure and compliant

environment. Kalp Network provides tools like Kalp Studio for streamlined decentralized

application development and the Kalp Wallet for managing digital assets within its

ecosystem.

Kalp Network’s Accounting is a specialized token smart contract system designed to operate

within the Kalp Chain ecosystem, leveraging Hyperledger Fabric as its underlying

technology. The contract manages a fixed-supply token with comprehensive features

including KYC integration, role-based access control, and cross-chain bridge support. It

implements core token functionalities (transfers, approvals) while maintaining strict security

through UTXO-based balance management, address validation, and transaction verification.

The system is designed with regulatory compliance in mind, featuring built-in KYC

requirements and administrative controls managed by the Kalp Foundation, making it

suitable for enterprise-grade financial operations within the Kalp Chain ecosystem.

The audit process involved a comprehensive approach, including manual code review,

automated analysis, and extensive testing and simulations of the smart contracts to assess

the project’s security and functionality. The audit covered a total of 8 files, encompassing

1687 lines of code. The codebase was thoroughly examined, with the audit team

collaborating closely with Kalp Network and referencing the provided documentation to

address any questions regarding the expected behavior. For an in-depth explanation of

used the smart contract security audit methodology, please refer to the Security

Assessment Methodology section of this document.

https://www.kalp.network/kalp-chain-kalp-sdk/

EXECUTIVE SUMMARY 4

1.2 SUMMARY Of fINDINGS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Detailed technical information on the audit findings, along with our recommendations for

addressing them, is provided in the Findings Report section for further reference.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 0 0 0 0 0

MAJOR 2 2 0 0 0

WARNING 9 9 0 0 0

INFO 2 2 0 0 0

TOTAL 13 13 0 0 0

AUDIT

OVERVIEW2

6

CONTENTS

1. EXECUTIVE SUMMARY ... 2

1.1. EXECUTIVE SUMMARY .. 3

1.2. SUMMARY OF FINDINGS .. 4

2. AUDIT OVERVIEW ... 5

2.1. DISCLAIMER ... 8

2.2. PROJECT BRIEF ... 9

2.3. PROJECT TIMELINE .. 10

2.4. AUDITED FILES ... 11

2.5. PROJECT OVERVIEW .. 12

2.6. CODEBASE QUALITY ASSESSMENT ... 13

2.7. FINDINGS BREAKDOWN BY FILE ... 15

2.8. CONCLUSION .. 16

3. FINDINGS REPORT ... 17

3.1. CRITICAL ... 18

3.2. MAJOR .. 19

M-01 CompositeKey does not depend on role name in smartcontract.go 19

M-02 Incorrect condition in smartcontract.go ... 21

3.3. WARNING ... 23

W-01 Incorrect check of parameter value in internal.go ... 23

W-02 Approve can be frontrun in smartcontract.go ... 25

W-03 Missing recipient address check in smartcontract.go .. 27

W-04 Overpowered GatewayAdmin role in smartcontract.go ... 28

W-05 Function does not return an error in internal.go ... 29

W-06 Unreasonable use of PartialCompositeKey in internal.go .. 31

W-07 Function processes the input array only partially in internal.go ... 33

7

W-08 Missing check of KYC status in smartcontract.go ... 34

W-09 No ability to transfer KalpFoundationRole in smartcontract.go .. 36

3.4. INFO .. 37

I-01 Error message ignored .. 37

I-02 Unused Function .. 38

4. APPENDIX ... 39

4.1. SECURITY ASSESSMENT METHODOLOGY .. 40

4.2. CODEBASE QUALITY ASSESSMENT REFERENCE .. 42

Rating Criteria ... 43

4.3. FINDINGS CLASSIFICATION REFERENCE ... 44

Severity Level Reference .. 44

Status Level Reference ... 44

4.4. ABOUT OXORIO ... 46

AUDIT OVERVIEW 8

2.1 DISCLAIMER

At the request of the client, Oxorio consents to the public release of this audit report. The

information contained herein is provided "as is" without any representations or warranties

of any kind. Oxorio disclaims all liability for any damages arising from or related to the use

of this audit report. Oxorio retains copyright over the contents of this report.

This report is based on the scope of materials and documentation provided to Oxorio for

the security audit as detailed in the Executive Summary and Audited Files sections. The

findings presented in this report may not encompass all potential vulnerabilities. Oxorio

delivers this report and its findings on an as-is basis, and any reliance on this report is

undertaken at the user’s sole risk. It is important to recognize that blockchain technology

remains in a developmental stage and is subject to inherent risks and flaws.

This audit does not extend beyond the programming language of smart contracts to include

areas such as the compiler layer or other components that may introduce security risks.

Consequently, this report should not be interpreted as an endorsement of any project or

team, nor does it guarantee the security of the project under review.

THE CONTENT OF THIS REPORT, INCLUDING ITS ACCESS AND/OR USE, AS WELL AS ANY

ASSOCIATED SERVICES OR MATERIALS, MUST NOT BE CONSIDERED OR RELIED UPON AS

FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER PROFESSIONAL ADVICE.

Third parties should not rely on this report for making any decisions, including the purchase

or sale of any product, service, or asset. Oxorio expressly disclaims any liability related to

the report, its contents, and any associated services, including, but not limited to, implied

warranties of merchantability, fitness for a particular purpose, and non-infringement.

Oxorio does not warrant, endorse, or take responsibility for any product or service

referenced or linked within this report.

For any decisions related to financial, legal, regulatory, or other professional advice, users

are strongly encouraged to consult with qualified professionals.

AUDIT OVERVIEW 9

2.2 PROJECT BRIEf

Title Description

Client Kalp Network

Project name Kalp Accounting Smart Contracts

Category Accounting

Website www.kalp.network

Documentation kalp-network.gitbook.io/gini-smartcontracts-documentation

Repository github.com/p2eengineering/Kalp-Accounting/tree/dev-v1

Initial Commit b57b66da2c1a268d2a36ffca19aef67bfe6ef65e

Platform L1

Network Kalp Network

Languages Go

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project Manager Nataly Demidova - nataly@oxor.io

https://kalp.network
https://kalp-network.gitbook.io/gini-smartcontracts-documentation
https://github.com/p2eengineering/Kalp-Accounting/tree/dev-v1
https://github.com/p2eengineering/Kalp-Accounting/commit/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e
https://github.com/p2eengineering/Kalp-Accounting/commit/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e
mailto:am@oxor.io
mailto:nataly@oxor.io

AUDIT OVERVIEW 10

2.3 PROJECT TIMELINE

The key events and milestones of the project are outlined below.

Date Event

December 26, 2024 Client engaged Oxorio requesting an audit.

January 15, 2025 The audit team initiated work on the project.

January 30, 2025 Submission of the comprehensive audit report.

AUDIT OVERVIEW 11

2.4 AUDITED fILES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that

estimates logical depth and decision points like loops and conditional branches) by the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

File Lines Blanks Comments Code Complexity

1 chaincode/constants/constants.go 33 1 0 32 0

2 chaincode/events/event.go 129 10 0 119 17

3 chaincode/ginierr/error.go 89 19 0 70 0

4 chaincode/helper/helper.go 98 21 0 77 19

5 chaincode/internal/internal.go 513 57 0 456 38

6 chaincode/logger/logger.go 11 3 0 8 0

7 chaincode/models/models.go 108 13 0 95 21

8 chaincode/smartcontract.go 933 103 0 830 57

Total 1914 227 0 1687 42

https://github.com/boyter/scc
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/constants/constants.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/events/event.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/ginierr/error.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/helper/helper.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/internal/internal.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/logger/logger.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/models/models.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go
https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 12

2.5 PROJECT OVERVIEW

The project represents a GINI token implementation built on the Kalp Network using the

Kalp SDK. This is a specialized token smart contract system designed to operate within the

Kalp Chain ecosystem, leveraging Hyperledger Fabric as its underlying technology.

The smart contract implements a comprehensive token management system with the

following key features:

Token Economics: Implementation of a fixed total supply token with 18 decimals,

featuring initial distributions between Foundation and Vesting Contract balances

KYC Integration: Built-in Know Your Customer (KYC) verification system that enforces

compliance at the transaction level

Gas Fee Management: Configurable gas fee system with dedicated collection

mechanisms for the Kalp Foundation

Access Control: Sophisticated role-based access control system, with special privileges

for Kalp Foundation and Gateway Admin addresses

Bridge Integration: Native support for cross-chain operations through a dedicated

bridge contract interface

The contract is structured using Golang and implements the following core functionalities:

Standard token operations (Transfer, Approve, TransferFrom)

UTXO-based balance management system

Allowance tracking and management

Blacklist/Denylist functionality

Event emission system for transaction tracking

The implementation includes several security mechanisms:

Strict address validation

Amount verification systems

Role-based access controls

Transaction signing verification

State management safeguards

This contract serves as a critical component in the Kalp Network's financial infrastructure,

facilitating secure token operations while maintaining regulatory compliance through built-

in KYC requirements and administrative controls.

AUDIT OVERVIEW 13

2.6 CODEBASE QUALITY

ASSESSMENT

The Codebase Quality Assessment table offers a comprehensive assessment of various

code metrics, as evaluated by our team during the audit, to gauge the overall quality and

maturity of the project’s codebase. By evaluating factors such as complexity, documentation

and testing coverage to best practices, this table highlights areas where the project excels

and identifies potential improvement opportunities. Each metric receives an individual

rating, offering a clear snapshot of the project's current state, guiding prioritization for

refactoring efforts, and providing insights into its maintainability, security, and scalability.

For a detailed description of the categories and ratings, see the Codebase Quality

Assessment Reference section.

Category Assessment Result

Access Control

The project's codebase implements a robust access control

mechanism with multiple differentiated roles to manage

system functionalities efficiently. However, the code exhibits

undesirable behavior in edge cases during role assignment,

as highlighted in issue M-01.

Good

Arithmetic

The project has no identified issues related to inadequate

handling of arithmetic operations. All arithmetic operations

are executed and verified correctly.

Excellent

Complexity
The contract appears well-structured; however, attention

should be paid to removing unused code. (I-02)
Good

Data Validation

The project performs data validation across many

components; however, there are gaps in validation under

certain conditions. Detailed attention is required to address

issues W-01, W-03 and W-07.

Good

Decentralization
Contract management is role-based; a decentralized

approach is not applicable here.

Not

Applicable

Documentation

Documentation regarding functionality and limitations was

provided, and it is highly helpful in understanding the

codebase and its functionality effectively.

Excellent

External

Dependencies

The project does not interact with any external smart

contracts in its logic; therefore, this metric is not applicable

in this context.

Not

Applicable

AUDIT OVERVIEW 14

Category Assessment Result

Error Handling

The project demonstrates robust exception handling

throughout the codebase, utilizing custom errors with clear

naming and descriptions. However, a few minor issues

related to error handling (W-05 and I-01) have been

identified.

Good

Logging and

Monitoring

The project exhibits excellent logging capabilities, recording

all important events within the system.
Excellent

Low-Level Calls

The project is free from low-level calls, ensuring a higher

level of security by avoiding potential pitfalls associated with

direct, low-level interactions with the blockchain.

Not

Applicable

Testing and

Verification

Working tests were provided for the codebase, with a

coverage of 83%, which is generally sufficient. However, not

all edge cases are thoroughly tested, as indicated by the

identified issues. Expanding test cases to cover these

scenarios would enhance the robustness and reliability of

the system.

Good

AUDIT OVERVIEW 15

2.7 fINDINGS BREAKDOWN BY

fILE

This table provides an overview of the findings across the audited files, categorized by

severity level. It serves as a useful tool for identifying areas that may require attention,

helping to prioritize remediation efforts, and provides a clear summary of the audit results.

File TOTAL CRITICAL MAJOR WARNING INFO

chaincode/smartcontract.go 8 0 2 5 1

chaincode/internal/internal.go 5 0 0 4 1

chaincode/helper/helper.go 1 0 0 0 1

https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/internal/internal.go
https://github.com/p2eengineering/Kalp-Accounting/blob/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/helper/helper.go

AUDIT OVERVIEW 16

2.8 CONCLUSION

A comprehensive audit was conducted on 8 files, revealing 2 major issues, along with

numerous warnings and informational notes. The audit highlighted various attack vectors

and potential vulnerabilities, with significant findings related to the management of

composite keys in role assignment, the handling of allowance and transaction approval

processes, recipient address validation, and logical errors in contract conditions. Additional

concerns were identified regarding KYC status checks, overpowered administrative roles,

and partial input processing, which could impact the overall reliability and security of the

smart contracts.

The proposed changes are aimed at reinforcing role management integrity, ensuring

accurate administrative permission enforcement, and enhancing code efficiency and

documentation clarity to strengthen the overall security and reliability of the smart

contracts. These recommendations are based on adherence to industry best practices,

ensuring that these aspects are enhanced to improve the overall security and reliability of

the smart contracts. We strongly advise addressing the identified issues to mitigate

potential risks, improve the quality of the codebase, and ensure the contracts meet the

highest security standards.

fINDINGS

REPORT3

fINDINGS REPORT 18

3.1 CRITICAL

No critical issues found.

fINDINGS REPORT 19

3.2 MAJOR

Location

Description

In the function SetUserRoles , a new role for a user ID is set:

key, e := ctx.CreateCompositeKey(constants.UserRolePrefix, []string{userRole.Id,

constants.UserRoleMap})

usrRoleJSON, err := json.Marshal(userRole)

if e := ctx.PutStateWithoutKYC(key, usrRoleJSON); e != nil {

 // ...

}

However, since the value of the key variable will always be the same for a specific user,

adding a new role to a user overwrites (removes) their existing role. This behavior is

unexpected and results in users being able to have only one role at a time.

Moreover, this behavior poses a potential risk of losing the KalpFoundation role and

control over the protocol:

Initially, during the Initialize function, the KalpFoundation role is assigned to a

special foundation address.

If the SetUserRoles function is later called to assign the KalpGateWayAdmin role to the

same foundation address, the KalpFoundation role will be overwritten and lost.

M-01
CompositeKey does not depend on role name in smar

tcontract.go

Severity MAJOR

Status • NEW

File Location Line

 function SetUserRoles 133-149smartcontract.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go#L133-L149

fINDINGS REPORT 20

Recommendation

We recommend making the value of CompositeKey depend on the role name. This will

prevent unintended overwriting of existing roles when using the SetUserRoles function.

fINDINGS REPORT 21

Location

Description

In the function TransferFrom , the transfer is processed when

signer != sender && signer != recipient && sender == recipient :

func (s *SmartContract) TransferFrom(...) (bool, error) {

 // ...

 if signer != sender && signer != recipient {

 if sender == recipient {

 if sender == constants.KalpFoundationAddress {

 if err = internal.RemoveUtxo(ctx, signer, gasFees); err != nil {

 return false, err

 }

 if err = internal.AddUtxo(ctx, constants.KalpFoundationAddress, gasFees); err != nil

{

 return false, err

 }

 }

 } else {

 // ...

Following the current code logic, in this case, the fee is deducted from the signer only if

sender == constants.KalpFoundationAddress . However, the fee should be deducted for

any sender , and the signer should not equal constants.KalpFoundationAddress . In the

current implementation, the fee is not deducted when

sender != constants.KalpFoundationAddress , even though it should be.

M-02 Incorrect condition in smartcontract.go

Severity MAJOR

Status • NEW

File Location Line

 function TransferFrom 799smartcontract.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go#L799

fINDINGS REPORT 22

Recommendation

We recommend replacing the condition sender == constants.KalpFoundationAddress

with the condition signer != constants.KalpFoundationAddress .

fINDINGS REPORT 23

3.3 WARNING

Location

Description

In the function Mint , there is a validation of the parameters accAmount1 and accAmount2 :

accAmount1, ok := big.NewInt(0).SetString(amounts[0], 10)

if !ok {

 return ginierr.ErrConvertingAmountToBigInt(amounts[0])

}

if accAmount1.Cmp(big.NewInt(0)) != 1 {

 return ginierr.ErrInvalidAmount(amounts[0])

}

accAmount2, ok := big.NewInt(0).SetString(amounts[1], 10)

if !ok {

 return ginierr.ErrConvertingAmountToBigInt(amounts[1])

}

if accAmount1.Cmp(big.NewInt(0)) != 1 {

 return ginierr.ErrInvalidAmount(amounts[1])

}

However, the variable accAmount1 is mistakenly used instead of the variable accAmount2

in the second validation check. As a result, the value of the accAmount2 parameter is not

validated and can be negative within the Mint function.

W-01 Incorrect check of parameter value in internal.go

Severity WARNING

Status • NEW

File Location Line

 function Mint 218internal.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/internal/internal.go#L218

fINDINGS REPORT 24

Recommendation

We recommend using the accAmount2 variable in the second validation check instead of

the accAmount1 variable.

fINDINGS REPORT 25

Location

Description

In the function Approve , the allowance value is set by the user's request:

func (s *SmartContract) Approve(ctx kalpsdk.TransactionContextInterface, spender string,

amount string) (bool, error) {

 logger.Log.Infoln("Approve invoked.... with arguments", spender, amount)

 if err := models.SetAllowance(ctx, spender, amount); err != nil {

 // ...

 }

 // ...

}

The Approve function directly sets the spender’s allowance, which enables attacker to

frontrun the approval transaction. When a user submits multiple Approve calls, they

inadvertently open a window of opportunity for malicious actors:

Using the Approve function, Alice allows Bob to transfer x tokens.

Later, Alice decides to modify the allowance to y and sends another Approve request.

In the meantime, before Alice’s new transaction is confirmed, Bob initiates the

TransferFrom function to transfer x tokens from Alice’s wallet.

If Bob’s transaction is processed first, followed by Alice's new Approve transaction, Bob

can also transfer an additional y tokens.

The total unauthorized transfer would amount to x + y tokens.

Recommendation

We recommend modifying how allowances are managed. Instead of directly setting new

values with Approve calls, adopt the use of increaseAllowance and decreaseAllowance

W-02 Approve can be frontrun in smartcontract.go

Severity WARNING

Status • NEW

File Location Line

 function Approve 316smartcontract.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go#L316

fINDINGS REPORT 26

functions, which specify the allowance changes incrementally. This approach mitigates the

risk of frontrunning and improves security.

fINDINGS REPORT 27

Location

Description

In the function Transfer , there is a check ensuring that the sender contract can only be

either bridgeContract or vestingContract :

calledContractAddress, err := internal.GetCalledContractAddress(ctx)

if calledContractAddress != s.GetName() {

 if calledContractAddress != bridgeContract && calledContractAddress != vestingContract {

 err := ginierr.New("The called contract is not bridge contract or vesting contract",

http.StatusForbidden)

 logger.Log.Error(err.FullError())

 return false, err

 }

 sender = calledContractAddress

}

However, there is no similar check for the recipient contract. This means tokens can be sent

to a contract address other than bridgeContract or vestingContract , and the Transfer

transaction will succeed. However, retrieving tokens from such a contract may not be

possible, effectively freezing the tokens.

Recommendation

We recommend adding a similar check to ensure that if the recipient is a contract, its

address must be either bridgeContract or vestingContract . This will prevent the

possibility of token freezing on unsupported contract addresses.

W-03 Missing recipient address check in smartcontract.go

Severity WARNING

Status • NEW

File Location Line

 function Transfer 410smartcontract.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go#L410

fINDINGS REPORT 28

Location

Description

In the function Transfer , there is a special option allowing the owner of the GatewayAdmin

role to set the sender's address:

func (s *SmartContract) Transfer(ctx kalpsdk.TransactionContextInterface, recipient string,

amount string) (bool, error) {

 // ...

 if isGatewayAdmin {

 var gasDeductionAccount models.Sender

 err := json.Unmarshal([]byte(recipient), &gasDeductionAccount)

 // ...

 sender = gasDeductionAccount.Sender

 // ...

However, this logic enables the GatewayAdmin role holder to transfer tokens from any

address at will. This behavior is unexpected for users and should at least be explicitly

documented.

Recommendation

We recommend considering limiting the permissions of the GatewayAdmin role. For

example, it could be restricted to transferring tokens from a user's address only after

obtaining prior approval from the user.

W-04
Overpowered GatewayAdmin role in

smartcontract.go

Severity WARNING

Status • NEW

File Location Line

 function Transfer 378smartcontract.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go#L378

fINDINGS REPORT 29

Location

Description

In the function UpdateAllowance , the allowance value is updated:

func UpdateAllowance(sdk kalpsdk.TransactionContextInterface, owner string, spender string,

spent string) error {

 approvalKey, e := sdk.CreateCompositeKey(constants.Approval, []string{owner, spender})

 approvalByte, e := sdk.GetState(approvalKey)

 var approval models.Allow

 if approvalByte != nil {

 // ...

 approval.Amount = fmt.Sprint(approvalAmount.Sub(approvalAmount, amountSpent))

 }

 approvalJSON, err := json.Marshal(approval)

 e = sdk.PutStateWithoutKYC(approvalKey, approvalJSON)

 return nil

}

The approval.Amount value is updated only if approvalByte != nil . However, if

approvalByte == nil , which indicates the absence of an allowance, no error is returned,

and an empty value is simply saved. Currently, this does not cause an issue as there is a

non-zero allowance check in the calling function. However, the UpdateAllowance function

in isolation does not behave as expected and should return an error when it is unable to

decrease the allowance.

W-05 Function does not return an error in internal.go

Severity WARNING

Status • NEW

File Location Line

 function UpdateAllowance 433internal.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/internal/internal.go#L433

fINDINGS REPORT 30

Recommendation

We recommend refactoring the UpdateAllowance function to return an error when it is

unable to decrease the allowance.

fINDINGS REPORT 31

Location

Description

In the function IsGatewayAdminAddress , the GetStateByPartialCompositeKey method is

used to obtain user roles:

func IsGatewayAdminAddress(ctx kalpsdk.TransactionContextInterface, userID string) (bool,

error) {

 prefix := constants.UserRolePrefix

 iterator, e := ctx.GetStateByPartialCompositeKey(prefix, []string{userID,

constants.UserRoleMap})

 if e != nil {

 err := ginierr.NewInternalError(e, fmt.Sprintf("failed to get data for gateway admin:

%v", e), http.StatusInternalServerError)

 logger.Log.Errorf(err.FullError())

 return false, err

 }

 defer iterator.Close()

 // ...

However, the use of the GetStateByPartialCompositeKey function is unreasonable in this

case, as roles are always stored using a full composite key, and in the current

implementation, a user can only have one role.

Moreover, according to the documentation, "For a full composite key, an iterator with an

empty response would be returned." Based on this, using a full composite key as an

argument for the GetStateByPartialCompositeKey function makes it impossible to

determine if a user has the KalpGateWayAdmin role.

W-06
Unreasonable use of PartialCompositeKey in inter

nal.go

Severity WARNING

Status • NEW

File Location Line

 function IsGatewayAdminAddress 131internal.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/internal/internal.go#L131
https://github.com/p2eengineering/Kalp-SDK-Public/blob/main/kalpsdk/transaction_context.go#L130-L131

fINDINGS REPORT 32

Recommendation

We recommend using the CompositeKey and GetState functions to retrieve a user's role

from the storage.

fINDINGS REPORT 33

Location

Description

In the function Mint , tokens are minted for the addresses specified in the parameter array:

func Mint(ctx kalpsdk.TransactionContextInterface, addresses []string, amounts []string)

error {

 // ...

 if err := MintUtxoHelperWithoutKYC(ctx, addresses[0], accAmount1); err != nil {

 return err

 }

 if err := MintUtxoHelperWithoutKYC(ctx, addresses[1], accAmount2); err != nil {

 return err

 }

 // ...

The Mint function processes and mints tokens only for the first two addresses in the

parameter array. However, there is no check to ensure that the length of the addresses

array is no greater than 2. In the current implementation, this does not cause an issue as

the calling function always passes arrays of length 2. However, the Mint function, when

used in isolation, does not behave as expected and should either validate that the input

array length is 2 or process all elements of the array instead of just the first two.

Recommendation

We recommend refactoring the Mint function to either validate that the input array length

is 2 or process all elements of the arrays, not just the first two.

W-07
Function processes the input array only partially in int

ernal.go

Severity WARNING

Status • NEW

File Location Line

 function Mint 242-247internal.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/internal/internal.go#L242-L247

fINDINGS REPORT 34

Location

Description

In the function SetUserRoles , a user is assigned the KalpGateWayAdminRole :

func (s *SmartContract) SetUserRoles(ctx kalpsdk.TransactionContextInterface, data string)

error {

 // ...

 ValidRoles := []string{constants.KalpGateWayAdminRole}

 if !slices.Contains(ValidRoles, userRole.Role) {

 return fmt.Errorf("invalid input role")

 }

 // ...

However, there is no verification to ensure that the new holder of the

KalpGateWayAdminRole has the required KYC status, as is implemented in the Initialize

function:

func (s *SmartContract) Initialize(...) (bool, error) {

 // ...

 if kyced, e := ctx.GetKYC(constants.KalpGateWayAdminAddress); e != nil {

 err := ginierr.NewInternalError(e, "Error fetching KYC status of Gateway Admin",

http.StatusInternalServerError)

 logger.Log.Errorf(err.FullError())

 return false, err

 } else if !kyced {

 return false, ginierr.New("Gateway Admin is not KYC'd", http.StatusBadRequest)

 }

 // ...

 if _, err := internal.InitializeRoles(ctx, constants.KalpGateWayAdminAddress,

constants.KalpGateWayAdminRole); err != nil {

W-08 Missing check of KYC status in smartcontract.go

Severity WARNING

Status • NEW

File Location Line

 function SetUserRoles 128smartcontract.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go#L128

fINDINGS REPORT 35

return false, err

 // ...

}

Recommendation

We recommend adding a KYC status check for the new holder of the

KalpGateWayAdminRole to maintain consistency and security.

fINDINGS REPORT 36

Location

Description

In the function SetUserRoles , a new role is assigned to a user:

func (s *SmartContract) SetUserRoles(ctx kalpsdk.TransactionContextInterface, data string)

error {

 // ...

 ValidRoles := []string{constants.KalpGateWayAdminRole}

 if !slices.Contains(ValidRoles, userRole.Role) {

 return fmt.Errorf("invalid input role")

 }

 // ...

However, neither this function nor other contract functions provide the ability to transfer

the KalpFoundationRole to another address after the contract initialization. Such a

transfer might be necessary, for example, when transitioning to a different private key or a

multisig wallet.

Recommendation

We recommend adding functionality to allow the transfer of the KalpFoundationRole to

another address.

W-09
No ability to transfer KalpFoundationRole in

smartcontract.go

Severity WARNING

Status • NEW

File Location Line

 function SetUserRoles 128smartcontract.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go#L128

fINDINGS REPORT 37

3.4 INfO

Location

Description

In the mentioned locations, the returned error is ignored and not processed. While this does

not currently lead to issues, ignoring errors is a poor programming practice and could result

in undesirable consequences.

Recommendation

We recommend processing all returned errors to improve the security and stability of the

codebase.

I-01 Error message ignored

Severity INFO

Status • NEW

File Location Line

 function IsContractAddress 40

 function IsUserAddress 50

 function TransferFrom 582

helper.go

helper.go

smartcontract.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/helper/helper.go#L40
https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/helper/helper.go#L50
https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/smartcontract.go#L582

fINDINGS REPORT 38

Location

Description

In the mentioned locations, there are unused functions that are never utilized within the

codebase. These functions add unnecessary clutter and reduce the overall maintainability of

the project.

Recommendation

We recommend removing unused functions to improve code readability and maintain

overall code quality.

I-02 Unused Function

Severity INFO

Status • NEW

File Location Line

 function GetGatewayAdminAddress 97

 function GetUserRoles 491

internal.go

internal.go

https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/internal/internal.go#L97
https://github.com/p2eengineering/Kalp-Accounting/tree/b57b66da2c1a268d2a36ffca19aef67bfe6ef65e/chaincode/internal/internal.go#L491

APPENDIX

4

APPENDIX 40

4.1 SECURITY ASSESSMENT

METhODOLOGY

Oxorio's smart contract security audit methodology is designed to ensure the security,

reliability, and compliance of smart contracts throughout their development lifecycle. Our

process integrates the Smart Contract Security Verification Standard (SCSVS) with our

advanced techniques to address complex security challenges. For a detailed look at our

approach, please refer to the full version of our methodology. Here is a concise overview of

our auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 41

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 42

4.2 CODEBASE QUALITY

ASSESSMENT REfERENCE

The tables below describe the codebase quality assessment categories and rating criteria

used in this report.

Category Description

Access Control

Evaluates the effectiveness of mechanisms controlling access to ensure only

authorized entities can execute specific actions, critical for maintaining

system integrity and preventing unauthorized use.

Arithmetic

Focuses on the correct implementation of arithmetic operations to prevent

vulnerabilities like overflows and underflows, ensuring that mathematical

operations are both logically and semantically accurate.

Complexity

Assesses code organization and function clarity to confirm that functions and

modules are organized for ease of understanding and maintenance, thereby

reducing unnecessary complexity and enhancing readability.

Data Validation

Assesses the robustness of input validation to prevent common

vulnerabilities like overflow, invalid addresses, and other malicious input

exploits.

Decentralization

Reviews the implementation of decentralized governance structures to

mitigate insider threats and ensure effective risk management during

contract upgrades.

Documentation

Reviews the comprehensiveness and clarity of code documentation to

ensure that it provides adequate guidance for understanding, maintaining,

and securely operating the codebase.

External

Dependencies

Evaluates the extent to which the codebase depends on external protocols,

oracles, or services. It identifies risks posed by these dependencies, such as

compromised data integrity, cascading failures, or reliance on centralized

entities. The assessment checks if these external integrations have

appropriate fallback mechanisms or redundancy to mitigate risks and

protect the protocol’s functionality.

Error Handling
Reviews the methods used to handle exceptions and errors, ensuring that

failures are managed gracefully and securely.

Logging and

Monitoring

Evaluates the use of event auditing and logging to ensure effective tracking

of critical system interactions and detect potential anomalies.

Low-Level Calls

Reviews the use of low-level constructs like inline assembly, raw call or

delegatecall , ensuring they are justified, carefully implemented, and do

not compromise contract security.

APPENDIX 43

4.2.1 Rating Criteria

Category Description

Testing and

Verification

Reviews the implementation of unit tests and integration tests to verify that

codebase has comprehensive test coverage and reliable mechanisms to

catch potential issues.

Rating Description

Excellent The system is flawless and surpasses standard industry best practices.

Good
Only minor issues were detected; overall, the system adheres to established best

practices.

Fair Issues were identified that could potentially compromise system integrity.

Poor Numerous issues were identified that compromise system integrity.

Absent A critical component is absent, severely compromising system safety.

Not

Applicable
This category does not apply to the current evaluation.

APPENDIX 44

4.3 fINDINGS CLASSIfICATION

REfERENCE

4.3.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

4.3.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 45

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding and acknowledges the associated

risks. This finding may affect the overall security of the project; however,

based on the risk assessment, the team will decide whether to address it or

leave it unchanged.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 46

4.4 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

ThANK YOU fOR ChOOSING

	Kalp Network Accounting Smart Contracts Security Audit Report
	Executive Summary
	Executive Summary
	Summary of findings

	Audit Overview
	Disclaimer
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Codebase Quality Assessment
	Findings Breakdown by File
	Conclusion

	Findings Report
	CRITICAL
	MAJOR
	M-01 CompositeKey does not depend on role name in smartcontract.go
	Location
	Description
	Recommendation

	M-02 Incorrect condition in smartcontract.go
	Location
	Description
	Recommendation

	WARNING
	W-01 Incorrect check of parameter value in internal.go
	Location
	Description
	Recommendation

	W-02 Approve can be frontrun in smartcontract.go
	Location
	Description
	Recommendation

	W-03 Missing recipient address check in smartcontract.go
	Location
	Description
	Recommendation

	W-04 Overpowered GatewayAdmin role in smartcontract.go
	Location
	Description
	Recommendation

	W-05 Function does not return an error in internal.go
	Location
	Description
	Recommendation

	W-06 Unreasonable use of PartialCompositeKey in internal.go
	Location
	Description
	Recommendation

	W-07 Function processes the input array only partially in internal.go
	Location
	Description
	Recommendation

	W-08 Missing check of KYC status in smartcontract.go
	Location
	Description
	Recommendation

	W-09 No ability to transfer KalpFoundationRole in smartcontract.go
	Location
	Description
	Recommendation

	INFO
	I-01 Error message ignored
	Location
	Description
	Recommendation

	I-02 Unused Function
	Location
	Description
	Recommendation

	Appendix
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

