
MARCH 28, 2024

FATHOM

VAULTS SMART

CONTRACTS

2

CONTeNTS

1. INTRO .. 4

1.1. DISCLAIMER ... 5

1.2. ABOUT OXORIO ... 6

1.3. SMART CONTRACTS AUDIT AND SECURITY ASSESSMENT METHODOLOGY 7

1.4. FINDINGS CLASSIFICATION .. 10

Severity Level Reference .. 10

Status Level Reference ... 10

2. AUDITING FATHOM VAULTS ... 11

2.1. UNDERSTANDING FATHOM VAULTS .. 13

2.2. HIGH-LEVEL FLOW OF FUNDS ... 14

2.3. RESEARCHED ATTACK VECTORS .. 15

2.4. CODE ANALYSIS PROCESS .. 17

Strategy Report Generation ... 17

Fund Withdrawal ... 18

3. AUDIT SCOPE ... 19

4. FINDINGS REPORT ... 21

4.1. CRITICAL ... 22

C-01 Conversion of losses and fees into shares occurs after changing totalDebt in VaultPackage 22

4.2. MAJOR .. 24

M-01 Incompatibility with deflationary tokens ... 24

4.3. WARNING ... 25

W-01 Parameter validation in VaultPackage .. 25

W-02 No validation for duplicate strategies in VaultPackage .. 26

W-03 Wrong rounding of lossesUserShare in VaultPackage ... 27

W-04 maxRedeem returns more shares than redeemable in VaultPackage 30

3

W-05 Using msg.sender instead of the dedicated sender parameter in VaultPackage 32

4.4. INFO .. 33

I-01 Redundant code in VaultPackage ... 33

I-02 Method can be front-runned to avoid loss in VaultPackage ... 34

I-03 Redundant code in VaultPackage ... 35

I-04 Redundant check for decimalsValue in VaultPackage .. 36

I-05 Use addition and subtraction assignement operators to improve code readability in

VaultPackage .. 37

I-06 Naming can be improved in VaultStorage ... 38

I-07 Redundant _onlySelf function in BaseStrategy .. 40

I-08 No withdraw stuck tokens functionality in TokenizedStrategy, VaultPackage 41

I-09 Missing check that tend logic is implemented in TokenizedStrategy 42

I-10 Unused function in VaultPackage ... 43

I-11 Int type initialization to zero is redundant in VaultPackage .. 44

I-12 Redundant inheritance from the contract ReentrancyGuard in FactoryStorage 45

I-13 Possible to erroneously set a very long distribution period in Investor 46

I-14 Redundant сall to _maxDeposit function in VaultPackage .. 47

I-15 Checking assets for zero occurs after calling _maxDeposit in VaultPackage 48

I-16 Unnecessary prohibition on setting depositLimit equal to zero in VaultPackage 49

I-17 Increment to empty value in VaultPackage ... 50

I-18 No event about setting vaultPackage in FactoryPackage ... 51

I-19 No validation of the same vaultPackage address during installation in FactoryPackage 52

I-20 Immutable variable in the section for constants in BaseStrategy ... 53

4.5. VULNERABILITIES AND MITIGATIONS ... 54

5. CONCLUSION .. 55

INTRO

1

INTRO 5

1.1 DISCLAIMeR

The audit makes no statements or warranties about the utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the platform or

its products, regulatory regime for the business model, or any other statements about the

fitness of the contracts to purpose, or their bug free status. The audit documentation is for

discussion purposes only.

INTRO 6

1.2 AbOUT OxORIO

Oxorio is a young but rapidly growing audit and consulting company in the field of the

blockchain industry, providing consulting and security audits for organizations from all over

the world. Oxorio has participated in multiple blockchain projects during which smart

contract systems were designed and deployed by the company.

Oxorio is the creator, maintainer, and major contributor of several blockchain projects and

employs more than 5 blockchain specialists to analyze and develop smart contracts.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

INTRO 7

1.3 SMART CONTRACTS AUDIT

AND SeCURITy ASSeSSMeNT

MeTHODOLOgy

When conducting a smart contracts audit, the audit team follows a structured approach to

systematically review, identify, and address potential vulnerabilities in the codebase. The

goal is to ensure the integrity, security, and robustness of the smart contracts. Here is an

overview of the audit team's approach:

Scope Definition

The audit team initiates the process by clearly defining the scope of the audit. This

involves understanding the architecture, functionalities, and dependencies of the

smart contracts under review. The scope also includes assessing the integration with

external systems, oracles, and other relevant components.

Code Review

The heart of the audit process is a meticulous review of the smart contracts'

codebase. The team examines each contract for vulnerabilities such as reentrancy

issues, arithmetic overflows/underflows, and unexpected logic flows. The goal is to

ensure that the code functions as intended and to identify potential areas of

exploitation.

Checking Against Security Best Practices

The audit team checks for adherence to security best practices in smart contract

development. This includes proper input validation, use of safe arithmetic operations,

protection against reentrancy attacks, and secure handling of user funds. The team

also evaluates whether the code follows established coding standards and guidelines.

External Dependency Analysis

Smart contracts often interact with external systems, oracles, and third-party

components. The audit team thoroughly analyzes these dependencies to identify

potential vulnerabilities or points of failure. Special attention is given to ensuring that

external inputs are validated and trusted sources are used.

Gas Optimization

Efficient gas usage is critical for smart contracts, especially in decentralized

environments where transaction costs matter. The audit team evaluates the gas

efficiency of the code, looking for opportunities to optimize computations, reduce

storage costs, and improve overall contract performance.

Test Coverage

The audit team assesses the comprehensiveness of the test suite associated with the

smart contracts. A robust test suite is essential for detecting and preventing

1.

2.

3.

4.

5.

6.

INTRO 8

regressions. The team may also conduct additional testing, including edge case

scenarios and simulations of potential attack vectors.

Security Tools and Automated Analysis

Security tools and automated analysis are employed to complement manual reviews.

These tools help identify common vulnerabilities, such as code duplication, insecure

dependencies, and potential issues that might be overlooked during manual

inspection.

Documentation Review

Documentation is an integral part of smart contract development. The audit team

reviews documentation to ensure that it accurately reflects the code's functionalities,

security considerations, and usage instructions. Clear and comprehensive

documentation contributes to the overall transparency of the project.

Result’s Cross-Check by Different Auditors

Following this initial individual assessment, a crucial step ensues – the mutual cross-

check process. During this collaborative stage, the audit results are meticulously

compared and verified among the different auditors involved, each contributing their

unique expertise and perspectives.

Report Consolidation

Once the individual audits are completed, the next step involves consolidating the

audited reports from the multiple auditors. This consolidation process involves

compiling and integrating the findings, recommendations, and insights from each

auditor into a unified and cohesive document. The consolidated report captures the

collective expertise and assessments of the audit team and presents a

comprehensive overview of the project's security status.

Reaudit of New Editions

After the client has received and reviewed the initial audit report, addressing any

identified issues and implementing necessary fixes, a crucial step follows – the

reaudit of new editions. During this phase, the audit team conducts a thorough

reevaluation, double-checking the previously identified issues and verifying the

effectiveness of the implemented fixes. The results of this reaudit are then

incorporated into a new version of the audit report, providing an updated and

accurate representation of the project's security posture.

Final Audit Report Publication

The culmination of the audit process involves the publication of the final audit report.

In this stage, the conclusive version of the audit report is provided to the client,

offering a comprehensive summary of the project's security strengths, vulnerabilities,

and recommended improvements. Simultaneously, the finalized audit report is made

publicly accessible by being published on the official website of the auditing

company. This transparency not only fosters accountability but also serves as a

valuable resource for the broader community, allowing stakeholders and the public

7.

8.

9.

10.

11.

12.

INTRO 9

to gain insights into the security measures and practices employed by the audited

project.

By following this comprehensive approach, the audit team aims to contribute to the

development of secure and reliable smart contracts, instilling confidence in the integrity of

the decentralized ecosystem.

INTRO 10

1.4 FINDINgS CLASSIFICATION

1.4.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

CRITICAL: A bug leading to assets theft, locked fund access, or any other loss of funds

due to transfer to unauthorized parties.

MAJOR: A bug that can trigger a contract failure. Further recovery is possible only by

manual modification of the contract state or replacement.

WARNING: A bug that can break the intended contract logic or expose it to DDoS

attacks.

INFO: Minor issue or recommendation reported to / acknowledged by the client's team.

1.4.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

NEW: Waiting for the project team's feedback.

FIXED: Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED: The project team is aware of this finding. Recommended fixes for this

finding are planned to be made. This finding does not affect the overall security of the

project.

NO ISSUE: Finding does not affect the overall security of the project and does not violate

the logic of its work.

DISMISSED: The issue or recommendation was dismissed by the client.

AUDITINg

FATHOM

VAULTS
2

AUDITINg FATHOM VAULTS 12

In the fast-paced world of decentralized finance (DeFi), security is paramount. With the rise

of innovative yield aggregator protocols like Fathom Vaults, users and developers alike

understand the critical importance of rigorous audits to ensure the integrity and safety of

the platform. Here we describe the audit process of Fathom Vaults, shedding light on how

the audit team worked to discover and mitigate possible vulnerabilities.

AUDITINg FATHOM VAULTS 13

2.1 UNDeRSTANDINg FATHOM

VAULTS

Fathom Vaults, like many yield aggregator protocols, aims to optimize returns for users by

automatically shifting funds among various liquidity pools and yield farming opportunities in

the DeFi ecosystem. The audit of Fathom Vaults was undertaken to identify and address

potential vulnerabilities that could compromise the security of users' funds.

Project overview

Fathom Vault is an ERC-4626 compliant contract that takes in user deposits, mints shares

corresponding to the user's share of the underlying assets held in that vault, and then

allocates the underlying asset to a range of different "strategies" that earn yield on that

asset.

A strategy refers to a yield-generating contract added to a vault that has the needed

ERC-4626 interface. The strategy takes the underlying asset and deploys it to a single source,

generating yield on that asset.

TokenizedStrategy is technical implementation of a Strategy that is also a stand-alone

ERC4626 compliant Vault. These are the yield generators in the Fathom ecosystem. This

pattern can be used so that either Vaults or individual users can deposit directly into and

receive shares in return.

Vault Factory is a factory contract that ensures that Vault contracts can be easily and

trustlessly deployed from it.

Users mint shares by depositing tokens, expecting passive yield with acknowledged

potential loss. Users can redeem shares for underlying tokens. To address price per share

(pps) volatility, the Vault deploys strategic mechanisms:

Internal Accounting: tracks debt and idle state through internal accounting instead of

balanceOf().

Profit Locking Mechanism: Fathom Vaults' mechanism locks profits by issuing burnable

shares over an unlock period.

Loss and Fee Mitigation: the Vault offsets losses or fees by burning owned locked shares.

AUDITINg FATHOM VAULTS 14

2.2 HIgH-LeVeL FLOw OF FUNDS

User Deposit

Users initiate the process by depositing their funds into the Fathom Vault using

deposit function. Deposited funds are pooled together with other users' funds. This

creates a collective pool of assets that the yield aggregator will use to generate

return. Total amount of available funds in the vault is kept in the totalIdle variable

Strategy Selection

Fathom Vault employs a set of strategies to maximize returns on the pooled funds.

Strategies can include yield farming, liquidity provision, lending, and other DeFi

mechanisms. The protocol implements generic TokenizedStrategy that is itself an

ERC4626 compliant single strategy Vault. The funds are sent to the strategy by the

user with a STRATEGY_MANAGER role with a updateDebt call which caluculates

amount of funds available for deposit and calls the deposit method of the strategy.

Strategy Execution and Accruing Returns

The chosen strategies are executed on different DeFi protocols. This may involve

providing liquidity to decentralized exchanges, lending assets on lending platforms,

or participating in yield farming on various protocols. As the strategies generate

returns, profits accrue to the pooled funds. Returns may come in the form of interest,

trading fees, or additional tokens earned through yield farming. To account for the

profit the method harvestAndReport of the strategy is called, which updates the

amount of funds available on the strategy, calculate appropriate fees and proceedes

with the mechanism of profit locking.

User Redemption or Withdrawal

Users have the option to redeem or withdraw their funds along with any accrued

returns. This process involves converting their share of the pooled funds back into

the original asset. This is achieved by the call to withdraw method which will use idle

funds of the vault if sufficient, or will withdraw funds from the strategies together

with accounting for the loss if present.

1.

2.

3.

4.

AUDITINg FATHOM VAULTS 15

2.3 ReSeARCHeD ATTACk

VeCTORS

Fathom Vaults as a yield aggregator protocol is susceptible to various attack vectors due to

the complex smart contract interactions and the constantly evolving nature of the DeFi

space. Here are some common attack vectors on yield aggregator protocols:

Flash Loan Attacks

Attackers exploit the ability to borrow a large sum of funds temporarily using flash

loans and manipulate the protocol within a single transaction. This can be used to

exploit vulnerabilities, such as front-running or price manipulation.

Reentrancy Attacks

Smart contracts are susceptible to reentrancy attacks when a malicious contract

repeatedly calls back into the vulnerable contract before the original execution is

completed. This can lead to unauthorized withdrawals or manipulations of the

protocol's state.

Liquidity Pool Exploitation

Attackers may take advantage of vulnerabilities in the underlying liquidity pools. This

could involve manipulating token prices, exploiting weaknesses in automated market

makers (AMMs), or exploiting vulnerabilities in the way liquidity is managed.

Smart Contract Bugs

Coding errors or vulnerabilities in the smart contracts themselves can be exploited by

attackers. This includes issues like arithmetic overflows/underflows, unexpected logic

flows, or insecure code practices that can lead to unintended consequences.

Front-Running

Attackers can front-run transactions by anticipating and executing trades before a

legitimate transaction is confirmed, exploiting price changes to their advantage. This

is particularly relevant in DeFi protocols where transactions are publicly visible before

being mined.

Supply Chain Attacks

Malicious actors might compromise the external dependencies of a yield aggregator,

such as external contracts, libraries, or tools. This can introduce vulnerabilities or

malicious code into the protocol.

Access Control Attacks

Manipulating users or administrators through social engineering attacks, such as

phishing, can result in unauthorized access to sensitive information or actions. The

lack of proper implementation of access control at the contract level, coupled with

1.

2.

3.

4.

5.

6.

7.

AUDITINg FATHOM VAULTS 16

insufficient role separation, heightens the risk of malicious actors gaining

unwarranted privileges or executing unauthorized transactions within the system.

AUDITINg FATHOM VAULTS 17

2.4 CODe ANALySIS PROCeSS

During the analysis, sections of code that were of particular interest for the audit were

identified.

Since the Fathom Vault project is based on Yearn V3 , special attention was paid to code

sections that differ between yearn and Fathom Vaults . This code potentially could contain

copying errors and may not be covered by tests.

It was also important to consider that the original Yearn is written in Vyper , while

Fathom Vault is written in Solidity . Therefore, the code taken from Yearn had to be

checked for issues specific to these languages.

The most critical parts of the code in terms of security, volume, and logic complexity are

related to fund withdrawal (withdraw , redeem) and report calculation (processReport).

Additionally, the mechanism for recalculating unlocked shares could present a significant

potential for errors due to its complexity.

2.4.1 Strategy Report Generation

During the report generation process, it is crucial to correctly calculate gain and loss. It is

unacceptable for the report processing to result in the issuance or burning of more shares

than necessary, considering the fees. Potential weak points here could include:

Mathematical calculations and their sequence, which may lead to an incorrect ratio of

assets and shares in the vault.

Rounding during division, which introduces inaccuracies in calculations and may result in

exceeding limits, leading to report generation errors.

Particular attention should be paid to the differences in share unlocking processes between

scenarios of significant profit and extensive share burning compared to scenarios of small

profit and minimal share burning. This is to address the potential manipulation of share

unlocking rates (profitUnlockingRate) or exceeding the available share size for unlocking.

// newProfitLockingPeriod is a weighted average between the remaining time of the previously

locked shares and the profitMaxUnlockTime

uint256 newProfitLockingPeriod = (previouslyLockedTime + newlyLockedShares *

profitMaxUnlockTime) / totalLockedShares;

// Calculate how many shares unlock per second.

profitUnlockingRate = (totalLockedShares * MAX_BPS_EXTENDED) / newProfitLockingPeriod;

AUDITINg FATHOM VAULTS 18

2.4.2 Fund Withdrawal

A special role in the audit process was played by the analysis of fund withdrawal functions.

The main risk associated with them is the possibility of withdrawing more funds than are

available to the user. Therefore, the audit focused on the potential exceeding of the

withdrawal limit:

uint256 maxWithdrawAmount = _maxWithdraw(owner, maxLoss, _strategies);

if (assets > maxWithdrawAmount) {

 revert ExceedWithdrawLimit(maxWithdrawAmount);

}

Here, attention should be paid to inaccuracies in division rounding and potential

mathematical errors. For example, the code involves many conversions from assets to

shares and vice versa, using both rounding up and rounding down:

uint256 shares = _convertToShares(assets, Rounding.ROUND_UP);

// ...

uint256 maxAssets = _convertToAssets(sharesBalanceOf[owner], Rounding.ROUND_DOWN);

Due to the interaction with the withdrawLimitModule and the strategy contract to obtain

limits, it was also necessary to analyze possible read-only reentrancy attacks.

Another potential attack vector is inflation attacks, so it was necessary to check the

possibility of manipulating contract balances to create an incorrect ratio of shares to assets

in the vault.

AUDIT SCOPe

3

AUDIT SCOPe 20

The scope of this audit includes smart contracts at the main folder.

The audited commit identifier is 43712da89b18c70ca13ad6fd7d7b5bc70fbf11db .

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/

FINDINgS

RePORT4

FINDINgS RePORT 22

4.1 CRITICAL

Location

Description

In the function _calculateShareManagement of the contract VaultPackage , the process of

modifying the totalAssets occurs before calculating shareToBurn . This results in the

conversion of loss into shareToBurn being computed based on the PPS (price per share),

already accounting for the incurred loss.

To simplify, let's consider a scenario without considering fees. Assume totalAssets=100

tokens, totalSupply=100 shares, of which 50 are locked shares held by the contract. Now,

let's say we incurred a loss of 30 tokens. To maintain PPS=1 , we need to burn 30 shares.

In the _calculateShareManagement function, we first reduce totalDebt by 30 tokens.

Now, totalAssets = 100-30 = 70 .

Next, we call the _convertToShares function to convert the 30 token loss into shares.

Inside the _convertToShares function, with assets=30 , currentTotalSupply=100 , and

currentTotalAssets=70 , the function returns 30 * 100 / 70 + 1 = 43 shares to burn:

uint256 numerator = assets * currentTotalSupply;

uint256 shares = numerator / currentTotalAssets;

if (rounding == Rounding.ROUND_UP && numerator % currentTotalAssets != 0) {

 shares += 1;

}

C-01
Conversion of losses and fees into shares occurs after

changing totalDebt in VaultPackage

Severity CRITICAL

Status • FIXED

File Location Line

 contract VaultPackage > function _calculateShareManagement 1449VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1449
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1449
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1449

FINDINgS RePORT 23

Thus, instead of burning 30 shares, we burn 43 , causing the new PPS to be

70/(100-43) = 1.228 instead of 1 .

The calculation of shares.accountantFeesShares and shares.protocolFeesShares in

case of protocol gain is affected in similar way - the accountant and the protocol will get less

fees than they should.

Recommendation

We recommend calculating the number of shares for an asset using the _convertToShares

function before modifying totalAssets .

Update

Client's response

Fixed in commit dbb492893822e87c36c5ccdec83951739c8d3930 .

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/commit/dbb492893822e87c36c5ccdec83951739c8d3930
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/commit/dbb492893822e87c36c5ccdec83951739c8d3930

FINDINgS RePORT 24

4.2 MAJOR

Location

Description

In the function _deposit of the contract TokenizedStrategy and the function _deposit

of the contract VaultPackage the _erc20SafeTransferFrom fuction call may result in

fewer tokens transferred to the contract due to fees taken during call by certain tokens.

Tokens with fee-on-transfer functionality, like USDT, which is not currently activated, may

cause incorrect accounting in the protocol if used as assets. Using rebase tokens as protocol

assets may lead to a mismatch between the vault or strategy balance and storage balance

values.

Recommendation

We recommend using balance differences for fee accounting in the case of fee-on-transfer

tokens, account for the changes in balance due to operations in the strategy and account

for changes in balances of deflationary tokens if utilized in the protocol.

Update

Client's response

We introduced the new mechanism of clearly stating asset type (uint256 public assetType;

// 1 for Normal / 2 for Deflationary / 3 for Rebasing). Before performing the transfer, we

check for the asset type and make a transfer based on that. For this version of the vault, we

support only the first type - Normal asset.

M-01 Incompatibility with deflationary tokens

Severity MAJOR

Status • ACKNOWLEDGED

File Location Line

 contract TokenizedStrategy > function _deposit 1304

 contract VaultPackage > function _deposit 1098

TokenizedStrategy.sol

VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/TokenizedStrategy.sol#L1304
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1098
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/TokenizedStrategy.sol#L1304
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/TokenizedStrategy.sol#L1304
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1098
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1098

FINDINgS RePORT 25

4.3 wARNINg

Location

Description

In the function initialize of the contract VaultPackage the parameter _asset is not

validated to be a non-zero address.

Recommendation

We recommend adding validation for the function parameter.

Update

Client's response

The issue is fixed in commit b194ee12319f52be963ac5a8cd5342b7ef69472a .

W-01 Parameter validation in VaultPackage

Severity WARNING

Status • FIXED

File Location Line

 contract VaultPackage > function initialize 50VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L50
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L50
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L50
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abR42
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abR42

FINDINgS RePORT 26

Location

Description

In the function setDefaultQueue of the contract VaultPackage no validation is performed

for duplicate strategies in the new queue passed in the newDefaultQueue parameter.

Attempting to withdraw funds twice from the same strategy may result in accounting errors.

Recommendation

We recommend validating the withdraw queue for duplicate strategies.

Update

Client's response

The issue is fixed in commit b194ee12319f52be963ac5a8cd5342b7ef69472a .

W-02 No validation for duplicate strategies in VaultPackage

Severity WARNING

Status • FIXED

File Location Line

 contract VaultPackage > function setDefaultQueue 83VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L83
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L83
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L83
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abR89-R104
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abR89-R104

FINDINgS RePORT 27

Location

Description

In the function _assessShareOfUnrealisedLosses of the contract VaultPackage , the

calculation of lossesUserShare involves integer division of numerator by

strategyCurrentDebt . This leads to lossesUserShare being either exact or slightly larger

than expected. In cases of division with a remainder, an additional 1 token is added to

lossesUserShare :

uint256 numerator = assetsNeeded * strategyAssets;

uint256 lossesUserShare = assetsNeeded - numerator / strategyCurrentDebt;

// Always round up.

if (numerator % strategyCurrentDebt != 0) {

 lossesUserShare += 1;

}

This results in withdrawing 1 token unit less than intended from the strategy in the

_withdrawAssets function using _withdrawFromStrategy . In scenarios where we intend

to withdraw only 1 token, an underflow error may occur.

For instance, if strategyCurrentDebt=100 and strategyAssets=90 , and intending to

withdraw only 1 token (assetsNeeded=1), lossesUserShare = 1 - (1*90) / 100 = 1 .

Consequently, the function returns 2 tokens because

numerator % strategyCurrentDebt = 90 % 100 !=0 .

In the subsequent _withdrawAssets function, an underflow error will occur due to

assetsToWithdraw=1 and unrealisedLossesShare=2 :

W-03
Wrong rounding of lossesUserShare in VaultPackag

e

Severity WARNING

Status • FIXED

File Location Line

 contract VaultPackage > function _assessShareOfUnrealisedLosses 1708VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1708
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1708
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1708

FINDINgS RePORT 28

uint256 unrealisedLossesShare = _assessShareOfUnrealisedLosses(strategy, assetsToWithdraw);

if (unrealisedLossesShare > 0) {

 if (currMaxWithdraw < assetsToWithdraw - unrealisedLossesShare) {

Recommendation

We recommend removing additional rounding from the function.

Update

Client's response

That was there originally because Yearn had it here: yearn/yearn-vaults-v3@d8abf37/

contracts/VaultV3.vy#L731

This rounding is part of a larger function that calculates the share of unrealized losses a

user would bear if they were to withdraw assets from a strategy that has experienced a loss,

ensuring that losses are distributed fairly among all participants based on their share of the

investment.

After reviewing it one more time, I think we actually need to keep that because If the

calculation of a user's share of the loss resulted in a fractional value, simply truncating this

number (rounding down) could lead to a situation where the total accounted loss across all

users is less than the actual loss. This discrepancy would unfairly distribute the strategy's

total loss, leaving a portion of it unaccounted for.

Rounding up ensures that every tiny fraction of a loss is accounted for and attributed to the

users. This might seem disadvantageous from a user's perspective, as it could slightly

increase their share of the loss, but it's a fairer approach when considering the collective

responsibility for the losses incurred by the strategy.

Oxorio's response

You write the following: "If the calculation of a user's share of the loss resulted in a

fractional value, simply truncating this number (rounding down) could lead to a situation

where the total accounted loss across all users is less than the actual loss."

But rounding down during the division numerator / strategyCurrentDebt leads to an

increase in losses instead of reducing them because subtraction occurs:

uint256 lossesUserShare = assetsNeeded - numerator / strategyCurrentDebt

Let's consider an example. Suppose 3 users contribute 100 asset tokens each to the

protocol. The current debt of the strategy is strategyCurrentDebt = 300 , and the strategy

incurs losses of 100 asset tokens, leaving strategyAssets = 200 .

FINDINgS RePORT 29

Then each of the users incurs a loss of lossesUserShare = 34 :

// numerator = 100 * 200 = 20000

uint256 numerator = assetsNeeded * strategyAssets;

// lossesUserShare = 100 - 20000 / 300 = 34

uint256 lossesUserShare = assetsNeeded - numerator / strategyCurrentDebt;

At this point, the total losses for all users amount to 34 * 3 = 102 , which is more than the

actual losses incurred by the strategy:

strategyCurrentDebt - strategyAssets = 300 - 200 = 100

However, the code adds an additional +1 to the loss if the numerator is divided by the debt

with a remainder:

if (numerator % strategyCurrentDebt != 0) {

 lossesUserShare += 1;

}

This means each user will incur a loss of 35 , resulting in the total loss for users being

35 * 3 = 105 .

Client's response

The issue is fixed in commit 94e05c538d51acd16008680de038791e10d18b3d .

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/94e05c538d51acd16008680de038791e10d18b3d
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/94e05c538d51acd16008680de038791e10d18b3d

FINDINgS RePORT 30

Location

Description

In the function maxRedeem of the contract VaultPackage , the function _convertToShares

is invoked with the parameter Rounding.ROUND_UP :

function maxRedeem(address owner, uint256 maxLoss, address[] calldata _strategies) external

view override returns (uint256) {

 uint256 maxWithdrawAmount = _maxWithdraw(owner, maxLoss, _strategies);

 uint256 sharesEquivalent = _convertToShares(maxWithdrawAmount, Rounding.ROUND_UP);

 return Math.min(sharesEquivalent, sharesBalanceOf[owner]);

}

This leads to the maxRedeem function returning an inflated value of the maximum shares

redeemable, resulting in a revert when attempting to redeem this number of shares.

For example, if maxWithdrawAmount=1999 tokens are passed to the _convertToShares

function with totalAssets=3000 tokens and totalSupply=1999 shares, the

_convertToShares function with Rounding.ROUND_UP returns

1999 * 1999 / 3000 +1 = 1333 shares.

We obtained the maximum number of shares for redemption, which is 1333 shares. Now,

we call the redeem function with this number of shares.

First, the shares are converted to assets:

uint256 assets = _convertToAssets(shares, Rounding.ROUND_DOWN);

As a result of this conversion, we get assets = 1333 * 3000 / 1999 = 2000 tokens.

W-04
maxRedeem returns more shares than redeemable in V

aultPackage

Severity WARNING

Status • FIXED

File Location Line

 contract VaultPackage > function maxRedeem 648VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L648
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L648
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L648

FINDINgS RePORT 31

Next, inside the _redeem function, a revert occurs because assets=2000 and

maxWithdrawAmount=1999 , similar to when calling the maxRedeem function. In other words,

assets > maxWithdrawAmount :

uint256 maxWithdrawAmount = _maxWithdraw(owner, maxLoss, _strategies);

if (assets > maxWithdrawAmount) {

 revert ExceedWithdrawLimit(maxWithdrawAmount);

}

Recommendation

We recommend converting tokens to shares with rounding down in the maxRedeem function

to avoid discrepancies leading to reverts during redemption.

Update

Client's response

The issue is fixed in commit b194ee12319f52be963ac5a8cd5342b7ef69472a .

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abR660
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abR660

FINDINgS RePORT 32

Location

Description

In the function _deposit of contract VaultPackage , msg.sender is used as the source

address for the transfer, while the sender parameter is only used when emitting an event.

However, the function itself is called only once within the deposit function, where the

sender parameter is set to msg.sender .

Recommendation

We recommend using the sender parameter instead of msg.sender within the _deposit

function.

Update

Client's response

The issue is fixed in commit b194ee12319f52be963ac5a8cd5342b7ef69472a .

W-05
Using msg.sender instead of the dedicated sender

parameter in VaultPackage

Severity WARNING

Status • FIXED

File Location Line

 contract VaultPackage > function _deposit 1096VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1096
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1111-R1123
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1111-R1123

FINDINgS RePORT 33

4.4 INFO

Location

Description

In the function _revokeStrategy of the contract VaultPackage the strategy is removed

from the default queue in a two step procedure: verifying whether the strategy is present in

the queue and copying the old queue to the new queue, skipping the revoked strategy.

Assuming that all strategies that receive the funds from the vault should be in the queue for

funds be withdrawable, the step of verifiying the presence of the strategy the queue is

redundant.

Recommendation

We recommend removing redundant verification to reduce complexity, maintain code

cleanliness, and decrease the gas consumption.

Update

Client's response

Fixed in commit 8e0973eed49f2dd41e03012161f17280d9965d21 .

The function was optimized.

I-01 Redundant code in VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function _revokeStrategy 1396VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1396
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1396
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1396
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/commit/8e0973eed49f2dd41e03012161f17280d9965d21
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/commit/8e0973eed49f2dd41e03012161f17280d9965d21

FINDINgS RePORT 34

Location

Description

In the function processReport of the contract VaultPackage the amount of loss for the

strategy is calculated and immediately factored into the price per share. In the event the

strategy incurs a loss, a malicious protocol user may choose to front-run the

processReport function to withdraw funds and avoid negative impact on their shares. The

funds can be deposited back into the protocol right after the processReport transaction.

Recommendation

We recommend considering the possibility of front-running and take measures if critical for

the protocol. The processReport transaction can be posted with private pool, and

withdrawals from the protocol may be organized in such way that makes withdrawals prior

to loss socialization impossible.

Update

Client's response

The issue will be fixed in future releases.

I-02
Method can be front-runned to avoid loss in

VaultPackage

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract VaultPackage > function processReport 273VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L273
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L273
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L273

FINDINgS RePORT 35

Location

Description

In the function initialize of contract VaultPackage , line 42 is a duplicate of line 41.

Recommendation

We recommend removing redundant code.

Update

Client's response

The issue is fixed in commit b194ee12319f52be963ac5a8cd5342b7ef69472a .

I-03 Redundant code in VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function initialize 42VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L42
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L42
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L42
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1111-R1123
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/b194ee12319f52be963ac5a8cd5342b7ef69472a#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1111-R1123

FINDINgS RePORT 36

Location

Description

In the function initialize of the contract VaultPackage there is a redundant validation

decimalsValue < 256 , which is always true for uint8 type.

Recommendation

We recommend removing redundant validation.

Update

Client's response

The issue is fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-04
Redundant check for decimalsValue in VaultPackag

e

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function initialize 52VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L52
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L52
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L52
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL56-L59
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL56-L59

FINDINgS RePORT 37

Location

Description

In the function _transfer of the contract VaultPackage the code readability can be

improved by using addition and subtraction assignement operators.

Recommendation

We recommend using addition and subtraction assignement operators to improve code

readability and save gas.

Update

Client's response

The issue is fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-05
Use addition and subtraction assignement operators to

improve code readability in VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function _transfer 980

 contract VaultPackage > function _transfer 982

VaultPackage.sol

VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L980
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L982
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L980
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L980
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1012-R1005
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1012-R1005

FINDINgS RePORT 38

Location

Description

In the mentioned locations the naming of variables can be improved to make the code more

readable:

totalSupplyAmount change to totalSupply

assetContract change to asset

decimalsValue change to decimals

sharesName change to name

sharesSymbol change to symbol

sharesBalanceOf change to balanceOf

sharesAllowance change to allowance

Recommendation

We recommend changing the names of variables to improve code readability and observe

naming compatibility with ERC20 standard for the vault tokens.

Update

Client's response

We need to keep our names as it is because we are inheriting IERC20, IERC20Metadata and

IERC4626 and we need to override some functions that has the exactly names that they are

I-06 Naming can be improved in VaultStorage

Severity INFO

Status • NO ISSUE

File Location Line

 contract VaultStorage 32

 contract VaultStorage 63

 contract VaultStorage 75

 contract VaultStorage 78

 contract VaultStorage 80

 contract VaultStorage 89

 contract VaultStorage 91

VaultStorage.sol

VaultStorage.sol

VaultStorage.sol

VaultStorage.sol

VaultStorage.sol

VaultStorage.sol

VaultStorage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L32
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L63
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L75
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L78
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L80
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L89
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L91
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L32
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L32
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L63
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L63
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L75
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L75
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L78
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L78
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L80
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L80
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L89
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L89
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L91
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/VaultStorage.sol#L91

FINDINgS RePORT 39

suggesting us to change which would lead us to have a lot of TypeError: Contract

"VaultPackage" should be marked as abstract. errors if we try to change

FINDINgS RePORT 40

Location

Description

The function _onlySelf of the contract BaseStrategy is solely utilized once in onlySelf

modifier. With an internal visibility modifier, it cannot be invoked from outside the

contract. Furthermore, its implementation consists of just one line:

 function _onlySelf() internal view {

 require(msg.sender == address(this), "!self");

 }

Recommendation

We recommend streamlining code by moving the single line implementation of the

_onlySelf function into the onlySelf modifier, thereby eliminating the need for the

redundant function.

Update

Client's response

Redundant fuction was removed in commit

089c7c823f5d2763034db378470901c16283ebaf .

I-07 Redundant _onlySelf function in BaseStrategy

Severity INFO

Status • FIXED

File Location Line

 contract BaseStrategy > function _onlySelf 80BaseStrategy.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/BaseStrategy.sol#L80
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/BaseStrategy.sol#L80
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/BaseStrategy.sol#L80
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-9cc9a8993ec5d52d3faefc2c089266c454fb27c9ad1f65ea734c30b61595439cL80-L83
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-9cc9a8993ec5d52d3faefc2c089266c454fb27c9ad1f65ea734c30b61595439cL80-L83

FINDINgS RePORT 41

Location

Description

In the mentioned contracts, there is no functionality to withdraw stuck tokens. As these

contracts are public and used by third parties, it is probable that some tokens are sent to

them by mistake. Therefore, a functionality to withdraw stuck tokens is needed.

Recommendation

We recommend implementing functionality to withdraw stuck tokens for these contracts.

Update

Client's response

Fixed on commit 15a5c0c52baca13c58950b65036465a4db4c2bd6

I-08
No withdraw stuck tokens functionality in TokenizedSt

rategy , VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract TokenizedStrategy 31

 contract VaultPackage 24

TokenizedStrategy.sol

VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/TokenizedStrategy.sol#L31
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L24
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/commit/15a5c0c52baca13c58950b65036465a4db4c2bd6
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/commit/15a5c0c52baca13c58950b65036465a4db4c2bd6

FINDINgS RePORT 42

Location

Description

In the function tend of contract TokenizedStrategy , there is no check to verify that the

tend logic is implemented in the BaseStrategy contract. As a result, if the tend logic is not

implemented, calling the tend function may lead to an unpredictable revert without a clear

error reason.

Recommendation

We recommend incorporating tendTrigger function of the BaseStrategy contract to

ensure that the tend logic is implemented before executing the tend function.

Update

Client's response

Tend logic is optional and having no logic by default won't lead to any unpredictable revert.

I-09
Missing check that tend logic is implemented in Token

izedStrategy

Severity INFO

Status • NO ISSUE

File Location Line

 contract TokenizedStrategy > function tend 496TokenizedStrategy.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/TokenizedStrategy.sol#L496
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/TokenizedStrategy.sol#L496
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/TokenizedStrategy.sol#L496

FINDINgS RePORT 43

Location

Description

The function _isContract of the contract VaultPackage isn't utilized anywhere in the

project codebase.

Recommendation

We suggest removing the unused function to enhance code readability and reduce the gas

cost of contract deployment.

Update

Client's response

Unused function was removed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-10 Unused function in VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function _isContract 1732VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1732
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1732
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1732
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1752-L1760
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1752-L1760

FINDINgS RePORT 44

Location

Description

In the mentioned locations variables are initialized to zero. These initializations are

redundant because zero is the default value of int/uint type variable in Solidity.

Recommendation

We recommend removing redundant initialization to zero.

Update

Client's response

The issue is fixed in the following lines:

089c7c823f5d2763034db378470901c16283ebaf#L1616

089c7c823f5d2763034db378470901c16283ebaf#L1594-R1588

089c7c823f5d2763034db378470901c16283ebaf#L1515-R1508

089c7c823f5d2763034db378470901c16283ebaf#L1415-R1408

089c7c823f5d2763034db378470901c16283ebaf#L1326-R1319

089c7c823f5d2763034db378470901c16283ebaf#L1089-R1080

089c7c823f5d2763034db378470901c16283ebaf#L964-R957

I-11
Int type initialization to zero is redundant in

VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function _manageUnlockingOfShares 932

 contract VaultPackage > function _issueSharesForAmount 1057

 contract VaultPackage > function _maxWithdraw 1493

 contract VaultPackage > function _assessProfitAndLoss 1572

 contract VaultPackage > function _assessProfitAndLoss 1573

 contract VaultPackage > function _unlockedShares 1594

VaultPackage.sol

VaultPackage.sol

VaultPackage.sol

VaultPackage.sol

VaultPackage.sol

VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L932
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1057
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1493
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1572
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1573
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1594
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1616
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1616
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1594-R1588
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1594-R1588
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1515-R1508
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1515-R1508
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1415-R1408
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1415-R1408
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1326-R1319
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1326-R1319
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1089-R1080
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1089-R1080
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL964-R957
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL964-R957

FINDINgS RePORT 45

Location

Description

In the contract FactoryStorage , there is inheritance from the ReentrancyGuard contract,

yet its functionality remains unused.

Recommendation

We recommend eliminating the redundant inheritance from the ReentrancyGuard contract

to enhance optimization and maintain codebase cleanliness.

Update

Client's response

The issue was fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-12
Redundant inheritance from the contract ReentrancyG

uard in FactoryStorage

Severity INFO

Status • FIXED

File Location Line

 contract FactoryStorage 10FactoryStorage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/factory/FactoryStorage.sol#L10
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-74554addedda21a8d92b4da9081cbd2825d9987ae5c806c4211c958e1501b273L8-R9
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-74554addedda21a8d92b4da9081cbd2825d9987ae5c806c4211c958e1501b273L8-R9

FINDINgS RePORT 46

Location

Description

In the function setupDistribution of the Investor contract, there are no restrictions on

setting an arbitrarily large value for distributionEnd . This creates the risk of accidentally

configuring an exceptionally long distribution period during a function call, and once set, it

cannot be altered.

Recommendation

We recommend adding limits on the duration of the distribution period to prevent

inadvertent and excessively long configurations.

Update

Client's response

The issue was fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-13
Possible to erroneously set a very long distribution

period in Investor

Severity INFO

Status • FIXED

File Location Line

 contract Investor > function setupDistribution 67Investor.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/Investor.sol#L67
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/Investor.sol#L67
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/Investor.sol#L67
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-80caa01c6437f69e8cab784a237b36b1fee7129019eacf58e6e7d4be144a9cf0R73
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-80caa01c6437f69e8cab784a237b36b1fee7129019eacf58e6e7d4be144a9cf0R73

FINDINgS RePORT 47

Location

Description

In the mentioned locations, there is a redundant possibility of calling the _maxDeposit

function twice:

if (assets > _maxDeposit(recipient)) {

 revert ExceedDepositLimit(_maxDeposit(recipient));

}

Recommendation

We recommend considering the possibility of calling the _maxDeposit function once,

storing the result in memory to avoid redundant calls within the if block.

Update

Client's response

The issue was fixed in the following lines:

089c7c823f5d2763034db378470901c16283ebaf#L1160-R1154

089c7c823f5d2763034db378470901c16283ebaf#L1160-R1154

I-14
Redundant сall to _maxDeposit function in

VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function _deposit 1088

 contract VaultPackage > function _mint 1123

VaultPackage.sol

VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1088
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1123
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1160-R1154
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1160-R1154
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1120-R1117
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1120-R1117

FINDINgS RePORT 48

Location

Description

In the function _deposit of contract VaultPackage , the maximum value for assets is

checked first using the _maxDeposit function, followed by a less resource-intensive check

for 0 :

if (assets > _maxDeposit(recipient)) {

 revert ExceedDepositLimit(_maxDeposit(recipient));

}

if (assets == 0) {

 revert ZeroValue();

}

Recommendation

We recommend swapping the checks for 0 and for the maximum value to optimize gas

consumption.

Update

Client's response

The issue was fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-15
Checking assets for zero occurs after calling _maxDep

osit in VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function _deposit 1091VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1091
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1091
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1091
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1120-R1117
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1120-R1117

FINDINgS RePORT 49

Location

Description

In the function setDepositLimit of contract VaultPackage , setting _depositLimit equal

to 0 is prohibited:

if (_depositLimit == 0) {

 revert ZeroValue();

}

This restriction is unnecessary because if depositLimit is set to 1 , the logic check in the

_maxDeposit function will also reject only deposits equal to 0 :

uint256 currentDepositLimit = depositLimit;

if (currentTotalAssets >= currentDepositLimit) {

 return 0;

}

Recommendation

We recommend removing the check for deposit limit equality to zero.

Update

Client's response

I agree that 1 would have the same effect as 0, but 0 is can be easily set by mistake since it's

default value for uint. I mean, passing 0 value is a common issue, and at least we can handle

it here. and the fact that we can't handle all unexpected values doesn't mean we shouldn't

handle any.

I-16
Unnecessary prohibition on setting depositLimit

equal to zero in VaultPackage

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract VaultPackage > function setDepositLimit 116VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L116

FINDINgS RePORT 50

Location

Description

In the function _calculateShareManagement of contract VaultPackage , the += operator is

used when no value has been assigned to shares.sharesToBurn yet:

shares.sharesToBurn += _convertToShares(loss + totalFees, Rounding.ROUND_UP);

Recommendation

We recommend replacing += with the assignment operator.

Update

Client's response

The issue was fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-17 Increment to empty value in VaultPackage

Severity INFO

Status • FIXED

File Location Line

 contract VaultPackage > function _calculateShareManagement 1449VaultPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1449
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1449
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/vault/packages/VaultPackage.sol#L1449
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1471-R1464
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-984b1975cb18e7d7e64d2547d7fdd552069512a3109e05ab47333657f91da8abL1471-R1464

FINDINgS RePORT 51

Location

Description

In the function initialize of contract FactoryPackage , values are set for vaultPackage ,

feeRecipient and feeBPS , but only the event for changing the fee is emitted:

emit FeeConfigUpdated(_feeRecipient, _feeBPS);

Recommendation

We recommend also adding an emission for the VaultPackageUpdated event.

Update

Client's response

The issue was fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-18
No event about setting vaultPackage in

FactoryPackage

Severity INFO

Status • FIXED

File Location Line

 contract FactoryPackage > function initialize 30FactoryPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/factory/packages/FactoryPackage.sol#L30
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-82b9090fe284d205ccef57f3a45c0e90db859fbc5e22a793da5fefd4326b4752R29
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-82b9090fe284d205ccef57f3a45c0e90db859fbc5e22a793da5fefd4326b4752R29

FINDINgS RePORT 52

Location

Description

In the function updateVaultPackage of contract FactoryPackage , there is no validation to

prevent setting the same address again. This results in emitting an event without actually

changing the vaultPackage itself.

Recommendation

We recommend adding a validation to check whether the vaultPackage has changed

before emitting the event.

Update

Client's response

The Issue was fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-19
No validation of the same vaultPackage address

during installation in FactoryPackage

Severity INFO

Status • FIXED

File Location Line

 contract FactoryPackage > function updateVaultPackage 35FactoryPackage.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/factory/packages/FactoryPackage.sol#L35
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-82b9090fe284d205ccef57f3a45c0e90db859fbc5e22a793da5fefd4326b4752R39-R41
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-82b9090fe284d205ccef57f3a45c0e90db859fbc5e22a793da5fefd4326b4752R39-R41

FINDINgS RePORT 53

Location

Description

In the contract BaseStrategy , there is a section for constants, but it contains only one

variable, which is immutable:

/*//

 CONSTANTS

//*/

// ...

address public immutable tokenizedStrategyAddress;

Recommendation

We recommend moving the variable to the section for immutable variables to avoid

confusion.

Update

Client's response

Fixed in commit 089c7c823f5d2763034db378470901c16283ebaf .

I-20
Immutable variable in the section for constants in Base

Strategy

Severity INFO

Status • FIXED

File Location Line

 contract BaseStrategy 101BaseStrategy.sol

https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/tree/43712da89b18c70ca13ad6fd7d7b5bc70fbf11db/contracts/strategy/BaseStrategy.sol#L101
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-9cc9a8993ec5d52d3faefc2c089266c454fb27c9ad1f65ea734c30b61595439cL84-R81
https://github.com/Into-the-Fathom/fathom-vaults-smart-contracts/pull/25/commits/089c7c823f5d2763034db378470901c16283ebaf#diff-9cc9a8993ec5d52d3faefc2c089266c454fb27c9ad1f65ea734c30b61595439cL84-R81

FINDINgS RePORT 54

4.5 VULNeRAbILITIeS AND

MITIgATIONS

Throughout the audit process, the team identified several potential vulnerabilities, aligning

with the common attack vectors highlighted in the introduction part of the report. The

majority of these vulnerabilities are associated with smart contract bugs, which could

potentially expose the protocol to various security risks. These vulnerabilities include but

are not limited to issues such as math errors, front-running issues, input validation

shortcomings, and logic flow vulnerabilities.

Researched Attack Vectors

Flash Loan Attacks

no vulnerabilities found

Reentrancy Attacks

no vulnerabilities found

Liquidity Pool Exploitation

not applicable

Smart Contract Bugs

vulnerabilities reported

Front-Running

vulnerabilities reported

Supply Chain Attacks

no vulnerabilities found

Access Control Attacks

no vulnerabilities found

CONCLUSION

5

CONCLUSION 56

The vulnerabilities found have been fixed and part of it acknowledged by the team, fixes are

planned in the next updates.

The following table contains the total number of issues that were found during audit:

Severity FIXED ACKNOWLEDGED NO ISSUE Total

CRITICAL 1 0 0 1

MAJOR 0 1 0 1

WARNING 5 0 0 5

INFO 16 2 2 20

Total 22 3 2 27

THANk yOU FOR CHOOSINg

	Fathom Vaults Smart Contracts
	Intro
	Disclaimer
	About Oxorio
	Smart Contracts Audit and Security Assessment Methodology
	Findings Classification
	Severity Level Reference
	Status Level Reference

	Auditing Fathom Vaults
	Understanding Fathom Vaults
	High-Level Flow of Funds
	Researched Attack Vectors
	Code Analysis Process
	Strategy Report Generation
	Fund Withdrawal

	Audit Scope
	Findings Report
	CRITICAL
	C-01 Conversion of losses and fees into shares occurs after changing totalDebt in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	MAJOR
	M-01 Incompatibility with deflationary tokens
	Location
	Description
	Recommendation
	Update
	Client's response

	WARNING
	W-01 Parameter validation in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	W-02 No validation for duplicate strategies in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	W-03 Wrong rounding of lossesUserShare in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response
	Oxorio's response
	Client's response

	W-04 maxRedeem returns more shares than redeemable in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	W-05 Using msg.sender instead of the dedicated sender parameter in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	INFO
	I-01 Redundant code in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-02 Method can be front-runned to avoid loss in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-03 Redundant code in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-04 Redundant check for decimalsValue in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-05 Use addition and subtraction assignement operators to improve code readability in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-06 Naming can be improved in VaultStorage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-07 Redundant _onlySelf function in BaseStrategy
	Location
	Description
	Recommendation
	Update
	Client's response

	I-08 No withdraw stuck tokens functionality in TokenizedStrategy, VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-09 Missing check that tend logic is implemented in TokenizedStrategy
	Location
	Description
	Recommendation
	Update
	Client's response

	I-10 Unused function in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-11 Int type initialization to zero is redundant in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-12 Redundant inheritance from the contract ReentrancyGuard in FactoryStorage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-13 Possible to erroneously set a very long distribution period in Investor
	Location
	Description
	Recommendation
	Update
	Client's response

	I-14 Redundant сall to _maxDeposit function in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-15 Checking assets for zero occurs after calling _maxDeposit in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-16 Unnecessary prohibition on setting depositLimit equal to zero in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-17 Increment to empty value in VaultPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-18 No event about setting vaultPackage in FactoryPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-19 No validation of the same vaultPackage address during installation in FactoryPackage
	Location
	Description
	Recommendation
	Update
	Client's response

	I-20 Immutable variable in the section for constants in BaseStrategy
	Location
	Description
	Recommendation
	Update
	Client's response

	Vulnerabilities And Mitigations

	Conclusion

