
MAY 10, 2023

FATHOM DAO.

REAUDIT

2

COnTEnTs

1. INTRO .. 7

1.1. DISCLAIMER .. 8

1.2. ABOUT OXORIO ... 9

1.3. SECURITY ASSESSMENT METHODOLOGY ... 10

1.4. FINDINGS CLASSIFICATION .. 11

1.4.1 Severity Level Reference ... 11

1.4.2 Status Level Reference .. 11

1.5. PROJECT OVERVIEW ... 12

1.6. AUDIT SCOPE ... 13

2. FINDINGS REPORT ... 14

2.1. CRITICAL ... 15

2.1.1 There's no owners array length validation in the constructor of MultiSigWallet 15

2.1.2 Adding a new owner doesn't change necessary amount of signatures in MultiSigWallet

... 16

2.1.3 Removing owner without revokeConfirmation transaction in MultiSigWallet 17

2.1.4 There is no function that implements the _cancel proposal in MainTokenGovernor 18

2.1.5 Changing the timelock address may cause re-execution of the proposals in

GovernorTimelockControl ... 19

2.1.6 The initVault and initAdminAndOperator functions can be initialized from any address in

the VaultPackage contract ... 20

2.1.7 There is no check that stream is active in the StakingHandler contract 21

2.1.8 Calling the updateConfig function may block the work of the StakingHandlers contract

... 22

2.2. MAJOR ... 24

2.2.1 In MultiSigWallet there's no parameter defining minimum amount of signatures 24

2.2.2 Transaction does not have a lifetime parameter in MultiSigWallet 25

3

2.2.3 Governance can delete TimelockAdmin and the contract will lose its control in

TimelockController ... 26

2.2.4 There is no validation for maxTargets when executing in Governor 27

2.2.5 There is no possibility to update multisig in Governor .. 28

2.2.6 There is no emergency shutdown mode in Governor ... 28

2.2.7 It is possible to set a null address in GovernorTimelockControl when updating timelock

... 29

2.2.8 There is no validation for null values for newQuorumNumerator in

GovernorVotesQuorumFraction .. 30

2.2.9 When MINTER_ROLE is added to VMainToken, the isWhiteListed list does not update .. 31

2.2.10 There is no possibility to transfer standard ERC20 tokens from the Governance balance

in MainTokenGovernor ... 33

2.2.11 There is no option to migrate to another contract in the VaultPackage contract 34

2.2.12 There is a DoS possibility when calling updateVault in the StakingHandlers contract .. 35

2.2.13 There is no emergency suspension of the rewards payment in the VaultPackage

contract ... 37

2.2.14 Unsafe use of the transfer and transferFrom functions in StakingHandlers and

VaultPackage ... 37

2.2.15 Tokens that get into the VaultPackage balance can be used to withdraw rewards in the

contract StakingHandler ... 38

2.2.16 Calling initializeStaking in the StakingHandlers contract does not allocate rewards for

MAIN_STREAM in VaultPackage ... 39

2.2.17 Updating rpsDuringLastClaimForLock for inactive stream in the StakingInternals

contract ... 41

2.2.18 There is a possibility for a manager to remove all streams in order to steal all pending

rewards in StakingHandlers .. 41

2.2.19 MINTER_ROLE and WHITELISTER_ROLE have the same value in the VMainToken 42

2.2.20 Transaction should be marked as executed if the call fails .. 43

2.2.21 Admin role can be revoked forever by mistake in VMainToken 45

2.2.22 It is possible for attacker to create active locks to force users to reach the lock limit in

StakingHandlers ... 45

4

2.2.23 prohibitedEarlyWithdraw is not set to false for lockid after unlocking in StakingHandlers

... 46

2.2.24 Calling unlock, earlyUnlock and unlockPartially before claimRewards will result in loss

of rewards in StakingHandlers .. 47

2.2.25 Share weight drop formula is incorrect in StakingInternals 48

2.2.26 Penalty can be bigger than stake in the StakingInternals .. 49

2.3. WARNING ... 52

2.3.1 Modifier onlyOwnerOrGov creates a complex confirmation structure in case of

Governance calls in the MultiSigWallet .. 52

2.3.2 No parameter check when adding transaction in MultiSigWallet 53

2.3.3 Missing validation, that the bytecode of address _to did not change while running a

transaction in MultiSigWallet ... 54

2.3.4 There's no ETH balance validation when adding a non-zero transaction _value in

MultiSigWallet .. 56

2.3.5 There is no time limit for executing proposal in Governor .. 57

2.3.6 There is no check for gas consumption in Governor ... 58

2.3.7 confirmProposal is possible for both active and inactive proposals in Governor 58

2.3.8 There is no check for the msg.value value available for execution in Governor and

TimelockController ... 59

2.3.9 There is no check for zero value for _token, _multiSig and _timelock in Governor,

GovernorTimelockControl, MainTokenGovernor .. 60

2.3.10 There is no check for zero in GovernorSettings._setProposalThreshold 61

2.3.11 There is no limit on the number of proposals for one proposer in Governor 61

2.3.12 A missing check that tokens are on the balance when calling the payRewards function

in the VaultPackage contract ... 63

2.3.13 There is no limit on the maximum number of active streams in the StakingHandlers

contract ... 63

2.3.14 Incorrect processing of contract modifiers Initializable in the StakingHanders contract

... 64

2.3.15 It is possible for any user to call createStream in the StakingHandlers contract 65

2.3.16 Possible overflow with calculations .. 66

5

2.3.17 Multiple streams can be active at the same time with the same parameters in

StakingHandler.sol ... 69

2.3.18 There is no limit for the amount of schedules on streams in StakingHandlers 69

2.3.19 It is possible to remove tokens that are used by another contract in VaultPackage 70

2.4. INFO .. 72

2.4.1 There's no logging of reverted transactions in MultiSigWallet 72

2.4.2 Non-optimal packing of the Transaction structure in MultiSigWallet 73

2.4.3 Incorrect status check in execute function in Governor .. 74

2.4.4 _minDelay can be set to zero in TimelockController ... 75

2.4.5 There is a redundant initialized check in VMainToken ... 76

2.4.6 There is redundant code in the VMainToken contract ... 76

2.4.7 The Governor and TimeLockController do not support the ERC721 and ERC1155 tokens

... 77

2.4.8 The addSupportedToken and removeSupportedToken calls have an redundant pausable

modifier in the VaultPackage contract ... 79

2.4.9 There are no checks that admin, proposers and executors are not zero addresses in

TimelockController ... 80

2.4.10 Unused import of StakingStructs in StakingStorage .. 80

2.4.11 Unused constant ONE_MONTH in StakingGettersHelper .. 81

2.4.12 Non-optimal storage layout for Stream struct in StakingStructs 82

2.4.13 Unnecessary ' in a RewardsLibrary comment ... 83

2.4.14 There is a typo in a comment in StakingInternals ... 83

2.4.15 Redundant check for maxDepositAmount > 0 in RewardsCalculator 84

2.4.16 It is not possible to withdraw tokens that were sent by mistake 85

2.4.17 Unused import of ReentracyGuard in StakingHandlers ... 86

2.4.18 Сustom initializer modifier is used instead of one from OpenZeppelin 86

2.4.19 Stream manager, treasury manager and admin represent the same account in

StakingHandlers ... 87

2.4.20 Revert message strings are too long .. 88

2.4.21 Unnecessary reads from storage ... 89

6

2.4.22 Misleading check (scheduleTimeLength > 0) in the RewardsCalculator 90

3. CONCLUSION .. 91

InTRO

1

InTRO 8

1.1 DIsClAIMER

The audit makes no statements or warranties about the utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the platform or

its products, regulatory regime for the business model, or any other statements about the

fitness of the contracts to purpose, or their bug free status. The audit documentation is for

discussion purposes only.

InTRO 9

1.2 AbOUT OxORIO

Oxorio is a young but rapidly growing audit and consulting company in the field of the

blockchain industry, providing consulting and security audits for organizations from all over

the world. Oxorio has participated in multiple blockchain projects during which smart

contract systems were designed and deployed by the company.

Oxorio is the creator, maintainer, and major contributor of several blockchain projects and

employs more than 5 blockchain specialists to analyze and develop smart contracts.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

InTRO 10

1.3 sECURITY AssEssMEnT

METHODOlOgY

A group of auditors is involved in the work on this audit. Each of them checks the provided

source code independently of each other in accordance with the security assessment

methodology described below:

1. Project architecture review

Study the source code manually to find errors and bugs.

2. Check the code for known vulnerabilities from the list

Conduct a verification process of the code against the constantly updated list of already

known vulnerabilities maintained by the company.

3. Architecture and structure check of the security model

Study the project documentation and its comparison against the code including the study of

the comments and other technical papers.

4. Result’s cross-check by different auditors

Normally the research of the project is done by more than two auditors. This is followed by

a step of mutual cross-check process of the audit results between different task performers.

5. Report consolidation

Consolidation of the audited report from multiple auditors.

6. Reaudit of new editions

After the provided review and fixes from the client, the found issues are being double-

checked. The results are provided in the new version of the audit.

7. Final audit report publication

The final audit version is provided to the client and also published on the official website of

the company.

InTRO 11

1.4 FInDIngs ClAssIFICATIOn

1.4.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

CRITICAL: A bug leading to assets theft, locked fund access, or any other loss of funds

due to transfer to unauthorized parties.

MAJOR: A bug that can trigger a contract failure. Further recovery is possible only by

manual modification of the contract state or replacement.

WARNING: A bug that can break the intended contract logic or expose it to DDoS

attacks.

INFO: Minor issue or recommendation reported to / acknowledged by the client's team.

1.4.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

NEW: Waiting for the project team's feedback.

FIXED: Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED: The project team is aware of this finding. Recommended fixes for this

finding are planned to be made. This finding does not affect the overall security of the

project.

NO ISSUE: Finding does not affect the overall security of the project and does not violate

the logic of its work.

DISMISSED: The issue or recommendation was dismissed by the client.

InTRO 12

1.5 PROjECT OvERvIEw

Fathom is a decentralized, community governed protocol. Locking FTHM tokens in DAO

vault will allow you to put forward proposals and vote on them.

InTRO 13

1.6 AUDIT sCOPE

The scope of the audit includes the following smart contracts at:

Treasury contracts

Governance contracts

DAO Tokens contracts

Staking contracts

The audited commit identifier is 5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a

The reaudited commit identifier is 30aa0beb27eb21ad1fef4675a7ef9f1ee01f61a5

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/30aa0beb27eb21ad1fef4675a7ef9f1ee01f61a5
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/30aa0beb27eb21ad1fef4675a7ef9f1ee01f61a5

FInDIngs

REPORT2

FInDIngs REPORT 15

2.1 CRITICAl

2.1.1 There's no owners array length validation in the

constructor of MultiSigWallet

Description

In the MultiSigWallet`s constructor there's no checking that the number of owners is less

than or equal MAX_OWNER_COUNT . If the contract is created with owners with length more

than MAX_OWNER_COUNT then that makes calls to addOwner , changeRequirement and

removeOwner (which uses call changeRequirement) functions impossible because they use

modifier validRequirement with this require statement:

require(ownerCount <= MAX_OWNER_COUNT && _required <= ownerCount && _required != 0 &&

ownerCount != 0, "MultiSig: Invalid requirement");

_;

Recommendation

We recommend adding owners array length validation to MultiSigWallet constructor:

require(_owners.length <= MAX_OWNER_COUNT, "owners limit reached");

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The implementation of the recommendation has led to new problems.

In MultiSigWallet contract constructor misses OwnerAddition event. If external

services or backend monitoring is used, _owners added with constructor will not be

included in the statistics.

SEVERITY CRITICAL

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L76
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/treasury/MultiSigWallet.sol#L122
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/treasury/MultiSigWallet.sol#L122

FInDIngs REPORT 16

We recommend adding the following line to constructor :

emit OwnerAddition(owner);

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in MultiSigWallet#L117 .

2.1.2 Adding a new owner doesn't change necessary

amount of signatures in MultiSigWallet

Description

In the function addOwner the owner is added without changing the parameter

numConfirmationsRequired . In a situation, for example, where signatures of 2 out of 4

owners are required, it results in that when the owner is added, there will be 2 out of 5, and

it requires less than a half of the signatures to manage the functions of the contract, so the

contract could be compromised.

Recommendation

We recommend adding this call into function addOwner :

changeRequirement(numConfirmationsRequired+1);

Update

Fathom's response

Implemented Auditors Recommendation. with slight change:

changeRequirement(numConfirmationsRequired + _owners.length);

SEVERITY CRITICAL

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/treasury/MultiSigWallet.sol#L117
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/treasury/MultiSigWallet.sol#L117
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L108
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L108

FInDIngs REPORT 17

2.1.3 Removing owner without revokeConfirmation

transaction in MultiSigWallet

Description

In the function removeOwner the owner is being removed without revocation of transaction

signatures, where they've signed. This creates a situation where the signatures of non-

existent owners may be used. For example, like in the following scenario:

There are signatures of 3 out of 5 owners.

3 owners opposed the signing of the transaction, and 2 owners approved it.

3 owners called removeOwner for 2 owners, who previously signed the transaction.

Then, one of the 3 remaining owners , using signatures of non-existent owners are

able to execute the transaction.

Recommendation

We recommend adding signature revocation mechanisms for signatures of the removed

owners to the function removeOwner .

Update

Fathom response

Implemented Auditors Recommendation.

Oxorio's response

This logic disables all transactions up to the current moment.

modifier notDisabled(uint _txIndex) {

 require(_txIndex >= lastDisabledTransactionIndex, "MultiSig: old txs has been disabled");

 _;

}

This allows to manipulate with transaction acceptance, for example, it is possible to execute

a transaction that removes a user before executing a transaction that collects

confirmations. Thus, the transaction that has collected confirmations will be disabled and

SEVERITY CRITICAL

STATUS FIXED

1.

2.

3.

4.

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L96
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L96

FInDIngs REPORT 18

will not be able to be executed.

We propose refactoring this code according to the recommendation.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in MultiSigWallet#L186-L194 , but it led to new major

vulnerabilities.

The removeOwner uses a loop to remove the owner, but if the owner is malicious, it can

provide enough proposals and confirm them itself, so that removing it by using the loop

would simply be impossible, as it would consume too much gas.

And also the contract will forever lose the option to remove the owner if the owner has

more than 1 confirmed transaction, because it first takes the total length of the array of

confirmed transactions of the owner, but the length of the array in the loop is reduced after

each removal and the index of the transaction to be removed only increases, resulting in an

attempt to access the element out of bounds and failure to remove the owner.

We recommend changing the owner removal logic.

Fathom's response

The fix was implemented in commit with identifier

4175625c23eeb27907a8dc5a5e9dd40c7593c7b6.

We accept that all the previous transactions that were confirmed and submitted will be lost,

and we will only submit the transactions and confirm the transactions that is really needed

again. It helps in filtering out the unnecessary transactions as well.

2.1.4 There is no function that implements the _cancel

proposal in MainTokenGovernor

Description

The contract MainTokenGovernor lacks a function that would implement the internal

function _cancel , that allows you to cancel the execution of proposal with

SEVERITY CRITICAL

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L186-L194
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L186-L194
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L186
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L186
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L188
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/4175625c23eeb27907a8dc5a5e9dd40c7593c7b6/contracts/dao/treasury/MultiSigWallet.sol#LL81C14-L81C46
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L91
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L91

FInDIngs REPORT 19

TimelockController . This can make it impossible to cancel the execution of a potentially

dangerous call.

Recommendation

We recommend adding logic that would allow you to cancel the execution of proposal and

call the internal function _cancel .

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.1.5 Changing the timelock address may cause re-

execution of the proposals in

GovernorTimelockControl

Description

A change of the timelock parameter in the GovernorTimelockControl contract can lead

to already executed proposals being able to be executed again. This is connected to the

fact that the execution status of the transaction is saved only in the TimelockController

contract, and the GovernorTimelockControl contract makes calls to the

TimelockController functions to get the proposals status in the state function.

Recommendation

We recommend adding a separate mapping to the GovernorTimelockControl contract

that would save information about the status of proposal and functions that would allow

to update that status.

SEVERITY CRITICAL

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L22
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L22
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L50
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L50

FInDIngs REPORT 20

Update

Fathom's response

Implemented Auditors Recommendation.

Added:

mapping(uint256 => bool) private isProposalExecuted;

Oxorio's response

The recommendation has not been fully implemented.

We recommend changing the work with the state function to:

isProposalExecuted[proposalId] == true

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in GovernorTimelockControl#L61 .

2.1.6 The initVault and initAdminAndOperator

functions can be initialized from any address in the

VaultPackage contract

Description

In the VaultPackage contract the initVault and initAdminAndOperator functions can

be called from any address. This could result in a potential attacker being able to intercept

control for both initVault and initAdminAndOperator calls.

SEVERITY CRITICAL

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L61
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L61
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L61
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L61
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L18
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L18
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L26
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L26

FInDIngs REPORT 21

Recommendation

We suggest two solutions to this problem:

Combine the initVault and initAdminAndOperator functions into one initialize

function and pass calldata to the VaultProxy constructor in the _data parameter.

Make a call to the initVault function on behalf of the DEFAULT_ADMIN_ROLE , and pass

the initVault parameters just as calldata in the VaultProxy constructor.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.1.7 There is no check that stream is active in the

StakingHandler contract

Description

In the StakingHandler contract the withdrawAllStreams and withdrawStream functions

do not have a check that stream is active. In the case of withdrawAllStreams this causes

the function to use the entire streams array each time with active and inactive streams

and, if there are not enough tokens on VaultPackage , the entire transaction will be

reverted . In the case of withdrawStream , this can lead to reverted transaction, or

unauthorized withdrawal of tokens from VaultPackage .

Recommendation

We recommend adding to the withdrawAllStreams and withdrawStream functions a

check that the output from stream has the status ACTIVE .

SEVERITY CRITICAL

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/common/proxy/VaultProxy.sol#L7
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/common/proxy/VaultProxy.sol#L7
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L243
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L243
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L236
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L236

FInDIngs REPORT 22

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.1.8 Calling the updateConfig function may block the

work of the StakingHandlers contract

Description

Calling the function updateConfig in the StakingHandler contract can disrupt its work.

This is possible for the following reasons:

There is no validation of _weight values. _weight can be equal to 0 and break the

calculation of share in streams for staking holders. This will result in incorrect

calculation of the repayment of staked tokens and rewards when exiting the stacking,

which will block the work of the contract.

Updating the voteToken parameter will cause the contract to try to burn new

voteToken tokens that are not on the balance when unlock is called.

Updating the parameters rewardsCalculator , voteShareCoef , maxLockPeriod ,

maxLockPositions will also lead to incorrect calculations and contract blocking.

Recommendation

We recommend discarding the updateConfig function and consider mechanisms for

stacking migration to a new contract with a suspension of the contract work during

migration, e.g. emergencyExit .

Update

Fathom's response

Implemented emergencyUnlockAndWithdraw applicable when contract is paused.

SEVERITY CRITICAL

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L252
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L252
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L189
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L189

FInDIngs REPORT 23

Oxorio's response

The fix was implemented, but with a small flaw - there is no check on how much lock the

user has. If the user has 0 lock , the loop will be skipped and the execution will continue

until the payRewards function is called with 0 tokens, which will cause a revert.

We recommend adding a check that the user's lock number is greater than 0 .

Fathom's response

The fix was implemented

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/staking/packages/StakingHandler.sol#L385-L399
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/4175625c23eeb27907a8dc5a5e9dd40c7593c7b6/contracts/dao/staking/packages/StakingHandler.sol#L395

FInDIngs REPORT 24

2.2 MAjOR

2.2.1 In MultiSigWallet there's no parameter defining

minimum amount of signatures

Description

The parameter _numConfirmationsRequired is checked in the constructor and in the

function changeRequirement , that is not equal to 0 , however, when multi-signature is set,

it allows the value 1 , and the contract may be used by one of the owners .

Recommendation

We recommend adding minimum quantity constant for necessary signatures, e.g.

MIN_CONFIRMATIONS and check if the set value is greater than or equal to

MIN_CONFIRMATIONS .

Update

Fathom's response

Implemented Auditors Recommendation.

modifier validRequirement(uint ownerCount, uint _required) {

 require(

 ownerCount > 0 && ownerCount <= MAX_OWNER_COUNT && _required <= ownerCount &&

ownerCount > 1 ? _required > 1 : _required > 0,

 "MultiSig: Invalid requirement"

);

 _;

}

Oxorio's response

The fix was implemented by adding a check to the validRequirement modifier applicable

to functions, but no changes were made in the constructor.

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L77
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L77
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L116
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L116
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L102-L107
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L102-L107
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L141-L174

FInDIngs REPORT 25

We recommend adding a check to the constructor as well.

Fathom's response

The fix was implemented

2.2.2 Transaction does not have a lifetime parameter in

MultiSigWallet

Description

In the structure Transaction there's no lifetime parameter expired , which is responsible

for the period of time during which the transaction must be executed. Since transactions

may be executed at random time and are not removed over time, frozen, previously not

approved transactions can be executed after a certain time and cause an undesirable effect.

Recommendation

We recommend adding an individual parameter, which is responsible for the maximum

time until the transaction can be executed, e.g. expired and check it before running

transactions.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The recommendation is not implemented correctly.

We meant the lifetime parameter, which is passed as a function parameter.

lifetime must be greater than the minimum value and already be in the body of the

function to get the value.

transactions[_txIndex].expireTimestamp = block.timestamp + lifetime

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/4175625c23eeb27907a8dc5a5e9dd40c7593c7b6/contracts/dao/treasury/MultiSigWallet.sol#L149
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L9
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L9
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/treasury/MultiSigWallet.sol#L176

FInDIngs REPORT 26

Fathom's response

Implemented Auditors Recommendation.

Lifetime parameter added, with the criteria that if the lifetime is zero then it can be

executed anytime in the future, plus a MAX_LIFETIME Parameter added.

Oxorio's response

The fix was implemented in MultiSigWallet#L181 .

2.2.3 Governance can delete TimelockAdmin and the

contract will lose its control in TimelockController

Description

In the TimelockController contract, Governance can take away the

TIMELOCK_ADMIN_ROLE rights from the address admin . In the case of an attack on

Governance and Council this would make it impossible to revoke the role from the

captured contracts.

Recommendation

We recommend to consider a permissions policy or add the DEFAULT_ADMIN_ROLE for

admin to be able to revoke the role in case of an attack.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The recommendation was not fully implemented.

Admin role was added but not functions like grantRole and revokeRole for specific roles

from the list of possible ones on behalf of DEFAULT_ADMIN_ROLE .

Only TIMELOCK_ADMIN_ROLE can change or delete TIMELOCK_ADMIN_ROLE , if the role was

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/treasury/MultiSigWallet.sol#L181
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/treasury/MultiSigWallet.sol#L181
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/TimelockController.sol#L57

FInDIngs REPORT 27

deleted from admin, then even having the DEFAULT_ADMIN_ROLE role, will not work with the

built-in external functions of the AccessControl contract.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in TimelockController#L228-L234 .

2.2.4 There is no validation for maxTargets when

executing in Governor

Description

In the Governor contract in the propose function there is no validation of the maximum

number of targets . This can cause proposal to have so many calls to external contracts

that the execution transaction will face a "gas bomb" effect. This means a large amount of

gas consumption or restricted gas limit block.

Recommendation

We recommend including the maxTargets parameter for _targets , the maximum number

of _targets in the proposal .

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/TimelockController.sol#L228-L234
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/TimelockController.sol#L228-L234
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L142
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L142
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 28

2.2.5 There is no possibility to update multisig in

Governor

Description

In the Governor contract there is no possibility to perform a migration to a new multisig .

For example to a new version of the contract.

Recommendation

We recommend adding the updateMultisig function, but so that only the old multisig

could call it.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.6 There is no emergency shutdown mode in

Governor

Description

There is no possibility in the Governor contract to put it into an emergency shutdown

status. If one of the TimelockController , MultiSigWallet contracts is compromised,

SEVERITY MAJOR

STATUS FIXED

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L34
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L34
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol

FInDIngs REPORT 29

Governance will not be able to perform an emergency shut-down of proposals execution

and stop contracts.

Recommendation

We recommend adding the emergencyExit function to the contract, which can be called by

Governance by majority vote without confirmation with multisig . The function can be

called once, its call stops the work of the contract. After calling this function, recovery is only

possible by migrating to a new contract.

Update

Fathom's response

Implemented Auditors Recommendation. and added emergencyStop

Oxorio's response

An emergencyStop method has been added, but the problem still remains.

The method just calls the pause() function

The method is called on behalf of Multisig , which can be compromised.

The main idea of this function is to put the contract into an emergency exit state, which can

only be restored by completely replacing the contract and the states. This is an extreme

case, an emergency stop. There should be no possibility to unpause after emergencyStop

call.

We propose refactoring this code according to the recommendation.

Fathom's response

Implemented Auditors Recommendation and added emergencyStop.

Oxorio's response

The fix was implemented in MainTokenGovernor#L86-L99 .

2.2.7 It is possible to set a null address in

GovernorTimelockControl when updating timelock

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/MainTokenGovernor.sol#L86-L99
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/MainTokenGovernor.sol#L86-L99

FInDIngs REPORT 30

Description

In the GovernorTimelockControl contract it is possible to set a null address when calling

the function _updateTimelock . This can make the execution of proposals not possible

since it is done through timelock . It will be also not possible to recover or change

timelock , since it needs the corresponding proposal to be executed, which is also not

possible with a zero timelock .

Recommendation

We recommend adding a check that the address newTimelock != address(0)

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

A redundant validation in the constructor in GovernorTimelockControl :

if (address(timelockAddress) == address(0)) {

 revert ZeroAddress();

}

We recommend removing it because the same validation can be found in

_updateTimelock .

Fathom's response

The fix was implemented

2.2.8 There is no validation for null values for

newQuorumNumerator in

GovernorVotesQuorumFraction

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L111
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L111
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L22-L24
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/4175625c23eeb27907a8dc5a5e9dd40c7593c7b6/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L27

FInDIngs REPORT 31

Description

In the GovernorVotesQuorumFraction contract in the _updateQuorumNumerator function it

is possible to set _quorumNumerator to 0 value, which would lead to a complete voting

stop.

Recommendation

We recommend adding a constant with the minimum allowable value of _quorumNumerator

and perform a corresponding check in the _updateQuorumNumerator function.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.9 When MINTER_ROLE is added to VMainToken , the

isWhiteListed list does not update

Description

In the VMainToken contract, for mint tokens, calling account, in addition to having

MINTER_ROLE rights, must also be in the isWhiteListed list, since the mint function calls

_mint, which contains _beforeTokenTransfer call.

When _beforeTokenTransfer is called, it checks that the msg.sender address is in the

isWhiteListed list.

In the case of mint , it is the address with the MINTER_ROLE rights.

The administrator can grant/revoke MINTER_ROLE from an address by calling grantRole /

revokeRole , but the isWhitelisted list remains unchanged - the old address stays in the

list while the new one is never added.

This creates a risk that if MINTER_ROLE is compromised by an attacker, the admin will not be

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorVotesQuorumFraction.sol#L55
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorVotesQuorumFraction.sol#L55
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L65
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L65

FInDIngs REPORT 32

able to correctly revoke his rights, and the attacker can make a transfer of tokens to

unauthorized addresses.

Recommendation

We recommend adding separate functions to grant and revoke the MINTER_ROLE , which will

also add and remove addresses from the isWhitelisted list.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

When revoking minter rights, _grantRole is used instead of _revokeRole . It should be

changed to:

function revokeMinterRole(address _minter) public override onlyRole(getRoleAdmin(MINTER_ROLE))

{

 _revokeRole(MINTER_ROLE, _minter);

To add and remove from whitelist the following functions are used:

 function addToWhitelist(address _toAdd) public override onlyRole(WHITELISTER_ROLE) {

 isWhiteListed[_toAdd] = true;

 emit MemberAddedToWhitelist(_toAdd);

 }

 function removeFromWhitelist(address _toRemove) public override onlyRole(WHITELISTER_ROLE)

{

 isWhiteListed[_toRemove] = false;

 emit MemberRemovedFromWhitelist(_toRemove);

 }

 function grantMinterRole(address _minter) public override

onlyRole(getRoleAdmin(MINTER_ROLE)){

 _grantRole(MINTER_ROLE, _minter);

 addToWhitelist(_minter);

 }

 function revokeMinterRole(address _minter) public override

onlyRole(getRoleAdmin(MINTER_ROLE)){

 _grantRole(MINTER_ROLE, _minter);

FInDIngs REPORT 33

 removeFromWhitelist(_minter);

 }

But it should be noted that addToWhitelist and removeFromWhitelist can be called from

WHITELISTER_ROLE . In this case, MINTER_ROLE must also have WHITELISTER_ROLE .

We recommend refactoring this code and adding internal functions _addToWhitelist and

_removeFromWhitelist without access control to grantMinterRole and

revokeMinterRole .

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in VMainToken#L46-L54 .

2.2.10 There is no possibility to transfer standard ERC20

tokens from the Governance balance in

MainTokenGovernor

Description

In the MainTokenGovernor contract there is no possibility to transfer tokens of the ERC20

standard from the balance of Governance, because execution of the transaction is actually

passed to the TimelockController .

Recommendation

We recommend fixing the possibility of withdrawal of tokens of the ERC20 standard from

the balance of Governance. This can be done in the following way:

It is a must to implement the addSupportingTokens function due to the fact that

various tokens of the ERC20 standard can be transferred to the Governance balance.

Governance must work only with trusted tokens like USDT, USDC, etc. This function will

make it possible to create a list of trusted tokens. Adding a token should only be done

through Governance.

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/tokens/VMainToken.sol#L46-L54
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/tokens/VMainToken.sol#L46-L54
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol

FInDIngs REPORT 34

Add a check to the execute function to confirm that _target is the contract address

from the trusted tokens. And only in this case pass it to the TimelockController

address.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The relay function is implemented incorrectly.

 function relay(address target, uint256 value, bytes calldata data) external payable virtual

onlyGovernance {

 require(isSupportedToken[target],"relay: token not supported");

 (bool success, bytes memory returndata) = target.call{value: value}(data);

 Address.verifyCallResult(success, returndata, "Governor: relay reverted without

message");

 }

Now it is possible to send value to a supported token contract. In this case all value sent to

the token contract will be lost.

We recommend making two different functions for relaying ERC20 tokens and native coins,

e.g. relayERC20 and relayETH .

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in MainTokenGovernor#L148-L156 .

2.2.11 There is no option to migrate to another contract

in the VaultPackage contract

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/MainTokenGovernor.sol#L100
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/MainTokenGovernor.sol#L100
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/MainTokenGovernor.sol#L148-L156
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/MainTokenGovernor.sol#L148-L156

FInDIngs REPORT 35

Description

The VaultPackage contract lacks the ability to suspend a contract in an emergency and

migrate assets to a new compatible VaultPackage contract.

Recommendation

We recommend adding the emergencyExit function in the contract which permanently

blocks contract function calls for REWARD_OPERATOR_ROLE , and adding the migrate

function, which allows to move tokens and token balances to a new version of

VaultPackage .

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The migration flow is not complete.

After migration, Vault can still be used.

We recommend forbidding to use functions after migration.

At the VaultPackage#L89 migrate function is using balance of the Vault tokens

instead of deposited mapping. In this case, during the migration, the tokens that got

into the contract by accident will become deposited tokens of the new Vault and will be

used as rewards.

We recommend using deposited variable instead balanceOf VaultPackage balance.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in VaultPackage.sol#L122 .

2.2.12 There is a DoS possibility when calling

updateVault in the StakingHandlers contract

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/vault/packages/VaultPackage.sol#L82
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/vault/packages/VaultPackage.sol#L89
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/vault/packages/VaultPackage.sol#L89
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/vault/packages/VaultPackage.sol#L122
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/vault/packages/VaultPackage.sol#L122

FInDIngs REPORT 36

Description

In the StakingHandlers contract, calling the function updateVault can cause all contract

functions that work with balances and VaultPackage functions to be blocked.

Recommendation

We recommend improving this function in the following way:

The VaultPackage update must be available if the current VaultPackage is put into

emergencyExit status (see recommendation to this issue).

Updating VaultPackage must only take place after calling the migrate function in the

old VaultPackage .

Updating VaultPackage must only take place if the migration of balances to the new

VaultPackage was successful.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The recommendation has not been fully implemented.

 function updateVault(address _vault) public override onlyRole(DEFAULT_ADMIN_ROLE) {

 // enforce pausing this contract before updating the address.

 // This mitigates the risk of future invalid reward claims

 require(paused != 0, "require pause");

 require(_vault != address(0), "zero addr");

 require(IVault(vault).migrated(), "nt migrated");

 vault = _vault;

 }

Despite checking that the vault is migrated, there is no validation that _vault is a

compatible VaultPackage , which is the contract where the migration took place.

We recommend adding new statement that _vault is VaultPackage for migration.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in 8cdb8eac2916c7b45731a2c672a7601e5b022cb6 commit.

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L269
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L269
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/packages/StakingHandler.sol#L264
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/commit/8cdb8eac2916c7b45731a2c672a7601e5b022cb6
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/commit/8cdb8eac2916c7b45731a2c672a7601e5b022cb6

FInDIngs REPORT 37

2.2.13 There is no emergency suspension of the rewards

payment in the VaultPackage contract

Description

In the VaultPackage contract there is no possibility to suspend the function payRewards .

This causes the attacker to continue taking tokens from the contract if the address with

REWARDS_OPERATOR_ROLE , such as StakingHandlers contract, is compromised.

Recommendation

We recommend adding the pausable modifier to the payRewards function of the

VaultPackage contract.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.14 Unsafe use of the transfer and transferFrom

functions in StakingHandlers and VaultPackage

SEVERITY MAJOR

STATUS FIXED

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L31
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L31
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 38

Description

In the StakingHandlers and VaultPackage contracts there are unsafe transfer and

transferFrom functions of the ERC20 standard. The use of these functions is not

recommended as not all tokens clearly comply with the ERC20 standard, more details here.

Recommendation

We recommend using the SafeERC20 extension from the OpenZepplin library and replace

the transfer and transferFrom calls with safeTransfer and safeTransferFrom .

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.15 Tokens that get into the VaultPackage balance

can be used to withdraw rewards in the contract

StakingHandler

Description

In the VaultPackage contract tokens that get into the balance of the contract can be used

for rewards payment from streams in StakingHandlers. This results in tokens, that get on

the balance by mistake and/or intentionally, not being able to be withdrawn from the

contract.

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L34
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L34
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L152
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L12
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L12
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol

FInDIngs REPORT 39

Recommendation

We recommend:

adding a separate deposit function in the VaultPackage contract and make reward

payments through the deposited parameter.

adding a separate withdraw function that would allow the DEFAULT_ADMIN_ROLE

address to take excess tokens away (both supportedTokens and tokens that are not on

the list).

replacing token transfers to VaultPackage in the StakingHandlers contract with

calling the deposit function of the VaultPackage contract. It should have a prior

safeApprove call to token in the VaultPackage contract.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

Recommendation has not been fully implemented. In the current version there is still no

possibility to withdraw tokens that got into the contract by accident.

We recommend adding a separate withdraw function, that would allow the

DEFAULT_ADMIN_ROLE

address to take excess tokens away (both supportedTokens and tokens that are not on the

list).

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The recommendation is implemented.

2.2.16 Calling initializeStaking in the

StakingHandlers contract does not allocate rewards for

MAIN_STREAM in VaultPackage

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L152
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/staking/vault/packages/VaultPackage.sol#L100-L112

FInDIngs REPORT 40

Description

In the StakingHandlers contract the initializeStaking function does not allocate

tokens for rewards MAIN_STREAM , as it happens when createStream is called. This may

result in the block of the withdrawStream function call from the MAIN_STREAM of tokens

and rewards for some users, if the amount in VaultPackage is less than the amount stated

in scheduleRewards .

Recommendation

We recommend moving the initialization of MAIN_STREAM from initializeStaking , that

can be called when creating StakingProxy , to the initializeMainStream function, which

can only be called by STREAM_MANAGER_ROLE . Before calling this function the work of the

contract must be suspended.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The implementation of the recommendation has led to new problems.

initializeMainStream can be reinitialized in StakingHandlers . initializeMainStream

function is missing custom initialize modifier in order to prevent it from the reinitialization.

Any manager with STREAM_MANAGER_ROLE can create a stream without proposing it.

We recommend adding custom stakingInitializer modifier in order to prevent future

reinitializations of the main stream.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in StakingHandler#L66 .

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L33
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L33
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L152
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L152
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/common/proxy/StakingProxy.sol#L7
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/common/proxy/StakingProxy.sol#L7
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/packages/StakingHandler.sol#L57
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/packages/StakingHandler.sol#L57
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingHandler.sol#L66
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingHandler.sol#L66

FInDIngs REPORT 41

2.2.17 Updating rpsDuringLastClaimForLock for

inactive stream in the StakingInternals contract

Description

In the StakingInternals contract when the _stake function is called the calculation of

rpsDuringLastClaimForLock is done even for inactive streams . This can lead to both

excessive gas consumption and denial of service if the number of streams , active and

inactive, is too large.

Recommendation

We recommend adding a check that the stream , for which the check takes place, has

ACTIVE status.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.18 There is a possibility for a manager to remove all

streams in order to steal all pending rewards in

StakingHandlers

SEVERITY MAJOR

STATUS FIXED

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L123
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L123
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L123
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 42

Description

In the contract StakingHandlers in the removeStream function a manager can remove

stream with pending rewards for users. This will result in users losing their pending

rewards.

Recommendation

We recommend adding logic to check that there are no pending rewards for users in the

stream before it can be deleted.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.19 MINTER_ROLE and WHITELISTER_ROLE have the

same value in the VMainToken

Description

In the contract VMainToken the MINTER_ROLE and WHITELISTER_ROLE constants have the

same value:

bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");

bytes32 public constant WHITELISTER_ROLE = keccak256("MINTER_ROLE");

When the role is set, the WHITELISTER_ROLE variable will in fact be set to the MINTER_ROLE .

This will result in the user getting both roles and an address with WHITELISTER_ROLE being

able to call the mint and burn functions.

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L163-L178
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L163-L178
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L14-L15
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L14-L15

FInDIngs REPORT 43

Recommendation

We recommend updating the setting of WHITELISTER_ROLE constant:

bytes32 public constant WHITELISTER_ROLE = keccak256("WHITELISTER_ROLE");

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.20 Transaction should be marked as executed if the

call fails

Description

In the contracts:

MultiSigWallet.sol#L137-L145)

TimelockController.sol#L111

Governor.sol#L76

If the call fails, all the state changes of the contract will be reverted. It means that this call

would not be marked as executed and can be repeated in the future, since it has enough

confirmations.

Recommendation

We recommend marking transaction as executed in all cases, removing lines with

statement of revert failed transactions, and adding data value to event.

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L137-L145
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L137-L145
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L111
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L111
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L76
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L76

FInDIngs REPORT 44

Update

Fathom's response

Implemented Auditors Recommendation.

For TimelockController , it makes sense to revert on fail of execute as it will make sure

that the bad proposals are not marked executed if it fails.

Oxorio's response

Recommendation was not implemented.

In the contracts

MultiSigWallet.sol#L232-L236

TimelockController.sol#L226

Governor.sol#L430

the failed call will lead to all the state changes of the contract to be reverted. It means that

this call would not be marked as executed and can be repeated in the future, since it has

enough confirmations. This can lead to unexpected behavior, the state of the blockchain

could be changed and already executed failed transaction could be re-executed and be

successful.

As for TimelockController , the revert on fail of _execute does not mark the proposal as

bad proposal, e.g. if the call has logic connected with timestamps it may be reverted on the

one block and be successful on the next block.

We recommend marking transaction as executed in all cases, removing lines with

statement of reverting the failed transactions, and adding data value to the event. If the

status of the call is false , transaction should not be reverted.

Fathom's response

Since MultiSig is used only by trusted wallets, this is not necessary functionality.

Oxorio's response

The fix was implemented in contracts:

TimelockController#L242 .

Governor.sol#L458 .

But wasn't implemented in MultiSigWallet#L226-L230 .

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/treasury/MultiSigWallet.sol#L232-L236
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/treasury/MultiSigWallet.sol#L232-L236
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/TimelockController.sol#L226
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/TimelockController.sol#L226
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/Governor.sol#L430
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/governance/Governor.sol#L430
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/TimelockController.sol#L242
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/TimelockController.sol#L242
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/Governor.sol#L458
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/Governor.sol#L458
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/treasury/MultiSigWallet.sol#L226-L230
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/treasury/MultiSigWallet.sol#L226-L230

FInDIngs REPORT 45

2.2.21 Admin role can be revoked forever by mistake in

VMainToken

Description

In the contract VMainToken in the initToken function, the value of admin can be the same

as msg.sender and thus it becomes possible that an admin accidently revokes admin role

from himself.

Recommendation

We recommend adding a check that admin is not equal to msg.sender .

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.22 It is possible for attacker to create active locks to

force users to reach the lock limit in StakingHandlers

Description

In the StakingHandler contract the attacker can create active locks for token holders with

createLockWithoutEarlyWithdraw function by using max value for lockPeriod in

multiple transactions. In this case user's locks limit can be reached and they will not be able

to enter the staking until the end of the lock period.

SEVERITY MAJOR

STATUS FIXED

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L32
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L32
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L180-L187
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L180-L187

FInDIngs REPORT 46

Recommendation

We recommend:

Revising the logic of the createLock and createLockWithoutEarlyWithdraw

functions and making a separate limit for creating a lock from a third-party address.

Or creating a lock from the msg.sender address.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.23 prohibitedEarlyWithdraw is not set to false for

lockid after unlocking in StakingHandlers

Description

In the function createLockWithoutEarlyWithdraw in the StakingHandlers contract

parameter prohibitedEarlyWithdraw for given lockid is set to true , but it does not

update to false after unlocking later in the unlock and unlockPartially functions.

Since the value in the locks array is deleted after the unlock, all new values will be

assigned the value of prohibitedEarlyWithdraw , regardless of whether the

createLockWithoutEarlyWithdraw or createLock function is called.

Recommendation

We recommend setting prohibitedEarlyWithdraw[account][lockId] to false before

deleting value from locks array in the unlock and unlockPartially functions:

prohibitedEarlyWithdraw[msg.sender][lockId] = false;

1.

2.

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L181
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L181
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L189
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L189
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L198
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L198
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L189
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L189
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L198
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L198

FInDIngs REPORT 47

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

prohibitedEarlyWithdraw[msg.sender][lockId] = false;

There is no setting of prohibitedEarlyWithdraw to false for the unlockPartially

method.

At the same time, it can be found in the earlyUnlock method, but it is not needed there

since this method only works when the value is already set to false .

We recommend adding prohibitedEarlyWithdraw to unlockPartially and removing it

from earlyUnlock functions.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in StakingHandler#225 .

2.2.24 Calling unlock , earlyUnlock and

unlockPartially before claimRewards will result in

loss of rewards in StakingHandlers

Description

In the contract StakingHandlers the following functions can cause a loss of rewards if they

are called before claimRewards :

unlock

earlyUnlock

unlockPartially

SEVERITY MAJOR

STATUS NO ISSUE

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingHandler.sol#L225
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingHandler.sol#L225
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L189
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L189
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L207
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L207
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L198
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L198

FInDIngs REPORT 48

It is possible because:

unlock and earlyUnlock functions contain an internal call to the _unlock , where

lock with given lockId is removed

in unlockPartially the rpsDuringLastClaimForLock for given lockId is updated

As a result, rewards for given lockId will be lost.

Recommendation

We recommend adding internal function _claimRewards and claim rewards with the calls

to unlock , earlyUnlock , and unlockPartially functions.

Update

Fathom's response

Frontend is designed in a way that tells the user to claim all the rewards before unlocking it.

So we accept the risk of rewards loss if the user ignores this notification.

You can try it on dapp.fathom.fi.

2.2.25 Share weight drop formula is incorrect in

StakingInternals

Description

In the StakingInternals contract share weight drop formula is incorrect:

uint256 shares = amountOfTokenShares + (voteShareCoef * nVoteToken) / 1000;

uint256 slopeStart = streams[MAIN_STREAM].schedule.time[0] + ONE_MONTH;

uint256 slopeEnd = slopeStart + ONE_YEAR;

if (timestamp <= slopeStart) return shares * weight.maxWeightShares;

if (timestamp >= slopeEnd) return shares * weight.minWeightShares;

return

 shares *

 weight.maxWeightShares +

 (shares * (weight.maxWeightShares - weight.minWeightShares) * (slopeEnd - timestamp)) /

 (slopeEnd - slopeStart);

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L76
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L76
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L146
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L150
dapp.fathom.fi
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L228

FInDIngs REPORT 49

It appears that the weight of the shares should gradually fall over time from

weight.maxWeightShares to weight.minWeightShares .

However, the current formula implements a weight drop from

(2* weight.maxWeightShares - weight.minWeightShares) to weight.maxWeightShares .

Recommendation

We recommend changing weight.maxWeightShares to weight.minWeightShares in

weight drop formula:

return

 shares *

 weight.minWeightShares +

 (shares * (weight.maxWeightShares - weight.minWeightShares) * (slopeEnd - timestamp)) /

 (slopeEnd - slopeStart);

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.2.26 Penalty can be bigger than stake in the

StakingInternals

Description

In the contract StakingInternals there is a penalty calculation in the _earlyUnlock

function:

SEVERITY MAJOR

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L181

FInDIngs REPORT 50

uint256 penalty = (weighingCoef * amount) / 100000;

user storage userAccount = users[account];

userAccount.pendings[MAIN_STREAM] -= penalty;

The maximum value of the weightingCoef that it can take is

weight.penaltyWeightMultiplier * weight.maxWeightPenalty . In this case, the weight

parameters are not checked in any way during initizalization. If they are set in a way that the

product of weight.penaltyWeightMultiplier * weight.maxWeightPenalty is greater

than 100000 , then the penalty will be greater than the amount, which in turn will lead to

excessive pendings or overflow.

Recommendation

We recommend adding the following check to initializeStaking and updateConfig :

require(weight.penaltyWeightMultiplier * weight.maxWeightPenalty <= 100000, "Wrong penalty

weight");

It is also worth moving the value of 100000 into a separate constant variable to improve the

readability of the code.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

require(weight.penaltyWeightMultiplier * weight.maxWeightPenalty <= 100000, "wrong weight");

The value of weight is checked before setting weight = _weight , so the result of

multiplying weight.penaltyWeightMultiplier * weight.maxWeightPenalty will always

be 0 .

We recommend replacing the validation to:

require(_weight.penaltyWeightMultiplier * _weight.maxWeightPenalty <= 100000, "wrong weight");

Fathom's response

Implemented Auditors Recommendation.

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L33
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/packages/StakingInternals.sol#L32

FInDIngs REPORT 51

Oxorio's response

The fix was implemented in StakingInternals#L41 .

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingInternals.sol#L41
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingInternals.sol#L41

FInDIngs REPORT 52

2.3 wARnIng

2.3.1 Modifier onlyOwnerOrGov creates a complex

confirmation structure in case of Governance calls in the

MultiSigWallet

Description

The modifier onlyOwnerOrGov uses the following construction:

require(isOwner[msg.sender] || governor == msg.sender, "MultiSig: MultiSigWallet,

onlyOwnerOrGov(): Neither owner nor governor");

that allows calling the following functions in the contract on behalf of Governance:

submitTransaction

confirmTransaction

revokeConfirmation

However, Governance may commit contract calls only with permission from

MultiSigWallet .

The result is that, if Governance wants to call a transaction on a MultiSigWallet contract:

Governance creates proposal for a call to MultiSigWallet .

MultiSigWallet after confirmation by owners must call confirmProposal on

Governance .

Then Governance may call one of MultiSigWallet functions.

In this case, however, MultiSigWallet transaction execution still requires signature of

owners .

Schematically, is looks like the following:

To make a call for MultiSigWallet it takes steps: Governance -> createProposal ->

confirmProposal .

SEVERITY WARNING

STATUS NO ISSUE

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L29
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L29
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L173
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L173
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L173

FInDIngs REPORT 53

To execute confirmProposal it takes steps: MultiSigWallet -> submitTransaction ->

confirmTransaction -> executeTransaction .

To make a call for MultiSigWallet it requires the next steps from Governance :

Governance -> execute -> MultiSigWallet .

And so each function in the sequence:

submitTransaction

confirmTransaction

revokeConfirmation

Recommendation

We recommend removing Governance from this modifier and give the permission to

MultiSigWallet administration to authorized representatives only, or review the logic of

Governance and approving of proposals from MultiSigWallet .

Update

Fathom's response

Thats the way its designed

2.3.2 No parameter check when adding transaction in

MultiSigWallet

Description

In the function submitTransaction there's no validation of address _to to be the contract.

Based on the logic of the contract, there may be the following cases:

_to is a EOA address, _value != 0, _data = "" .

_to is a contract.

Recommendation

We recommend adding parameter checking when adding a transaction according to

possible cases of using MultiSigWallet .

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L121
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L121

FInDIngs REPORT 54

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The recommendation is not implemented correctly.

if (_to.isContract()) {

 require(_data.length > 0, "no calldata for contract call");

} else {

 require(_data.length == 0 && _value > 0, "calldata for EOA call or 0 value");

}

This implementation prohibits transferring ETH to the contract's balance. Since in the

current condition it is assumed that if _to is a contract, then _data must not be empty.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in MultiSigWallet#L130-L134 , but with logic that is misleading,

since if revert occurs because _to is EOA and _data.length > 0 , an

InsufficientValue error is thrown even though the original reason is calldata for EOA.

We recommend creating a separate custom error to be used when the _data.length >

0 condition is true, so that the real reason for the revert can be understood.

Fathom's response

The fix was implemented. We changed error revert name.

2.3.3 Missing validation, that the bytecode of address

_to did not change while running a transaction in

MultiSigWallet

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/treasury/MultiSigWallet.sol#L94
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L130-L134
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L130-L134
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/4175625c23eeb27907a8dc5a5e9dd40c7593c7b6/contracts/dao/treasury/MultiSigWallet.sol#L139

FInDIngs REPORT 55

Description

In the functions confirmTransaction and executeTransaction there's no validation that

the bytecode of address _to did not change as an EOA or smart contract.

In this case, the following situations are possible:

when the transaction was added with the parameter _to as an EOA address, i.e. with an

empty bytecode, and when the transaction is executed, frontrunning may occur and the

attacker may deploy to _to address a smart contract with malicious code, using

metamorphic contracts and create2 opcodes.

when the transaction was added with the parameter _to as a smart contract, and at the

moment of transaction execution, frontrunning may occur, and the attacker may change

the bytecode at the _to address for a smart contract with malicious code using

metamorphic contracts and create2 opcodes.

Recommendation

We recommend adding:

checking that _to is an EOA address and when confirmTransaction and

executeTransaction if the contract isn't deployed into the adress, using isContract

from OpenZeppelin.

checking that the contract's bytecode has not been changed, recording the bytecode

hash into a separate mapping, e.g.:

bytes32 codeHash;

assembly {

 codeHash = extcodehash(_to);

}

isWhitelistedBytesCode[_to] = codeHash;

...

bytes32 codeHash;

assembly { codeHash := extcodehash(account) }

return (codeHash != isWhitelistedBytesCode[_to]);

Update

Fathom's response

Implemented Auditors Recommendation.

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L129
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L129
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L137
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L137
https://mixbytes.io/blog/pitfalls-of-using-cteate-cteate2-and-extcodesize-opcodes
https://mixbytes.io/blog/pitfalls-of-using-cteate-cteate2-and-extcodesize-opcodes
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol#L36
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol#L36

FInDIngs REPORT 56

Oxorio's response

Corrections were made, but one fact that was not taken into consideration is that the _to

hash is overwritten in the submitTransaction function and the following scenario may

occur:

The owner or Governor is proposed to call the contract at 0xA address, proposal

number 1.

The desired number of votes is gained.

The contract 0xA changes the bytecode using the metamorphic technique.

One of the owners or the Governor offers another call to contract 0xA , which

overwrites the stored code hash for 0xA and after that proposal number 1 is able be

executed even though the code of 0xA has changed.

Alternatively, consider another situation where one of the owners is malicious and offers to

call a smart-contract that is under his ownership, and in the same scenario as described

above, changes the logic before the call itself.

We recommend refactoring the logic of the code and to take the described scenario into

account.

Fathom's response

We implemented mapping to use txn Index to have more granular approach.

2.3.4 There's no ETH balance validation when adding a

non-zero transaction _value in MultiSigWallet

Description

In the function submitTransaction there's no verifying that MultiSigWallet account has

the necessary amount on the balance for the transaction. In case of approval by owners ,

the transaction will be approved but not executed.

Recommendation

We recommend adding balance check while adding a transaction with a non-zero value

_value .

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/treasury/MultiSigWallet.sol#L237
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/4175625c23eeb27907a8dc5a5e9dd40c7593c7b6/contracts/dao/treasury/MultiSigWallet.sol#L324
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L121
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L121

FInDIngs REPORT 57

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.3.5 There is no time limit for executing proposal in

Governor

Description

The Governor contract has no parameters for the time limit on proposal execution. This

can result in no longer relevant proposal being executed after a period of time.

Recommendation

We recommend adding the lifetime parameter, the runtime of proposal , and check it

during the execution.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

We have not found a implemented corrections for this issue.

We recommend adding a lifetime parameter, the runtime of proposal, and check it during

the execution.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in Governor.sol#L222 .

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/Governor.sol#L222
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/Governor.sol#L222

FInDIngs REPORT 58

2.3.6 There is no check for gas consumption in Governor

Description

In the Governor contract, the propose function lacks a parameter and a check for gas limit

for calls to targets . This could make it possible for a call to a vulnerable external contract

to be able to loop the call and perform a DDoS attack with high gas consumption.

Recommendation

Consider implementing the gasLimit parameter - the maximum gas amount for a call, for

each of the targets .

Update

Fathom's response

We will have voting for proposal and multisig execution confirmation. Thats hard to DDoS

there, so we won’t implement gas check.

2.3.7 confirmProposal is possible for both active and

inactive proposals in Governor

Description

In the Governor contract the function confirmProposal can be called for both active and

inactive proposals.

Recommendation

We recommend adding a check that the proposal is either successful or already scheduled

in the confirmProposal function:

SEVERITY WARNING

STATUS NO ISSUE

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L142
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L173
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L173

FInDIngs REPORT 59

ProposalState status = state(proposalId);

require(status == ProposalState.Succeeded || status == ProposalState.Queued, "Governor:

proposal not successful");

Update

Fathom's response

Implemented Auditors Recommendation.

2.3.8 There is no check for the msg.value value available

for execution in Governor and TimelockController

Description

In the Governor and TimelockController contracts the execute functions do not check

the msg.value balance value needed to execute _targets , which would result in gas

consumption even if the amount of ETH is not enough.

Recommendation

We recommend adding:

a check that the msg.value passed to the execute function is greater than the total

value needed for the execution of the targets calls in the proposal.

a return of the remaining ETH balance to the sender of the transaction after the

execution of proposal .

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The value of the transferred ETH is checked in the TimelockController contract when the

execute method is executed, but is not checked for executeBatch , which is actually used

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L76
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L76
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L111
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L111

FInDIngs REPORT 60

in the contracts.

We propose refactoring this code according to the recommendation.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in TimelockController#L165 .

2.3.9 There is no check for zero value for _token ,

_multiSig and _timelock in Governor ,

GovernorTimelockControl , MainTokenGovernor

Description

In the constructors of Governor , GovernorTimelockControl and MainTokenGovernor

contracts it is possible to set zero values for tokenAddress , _multiSig , timelock

contracts.

This may cause that _token , _multiSig and _timelock can be set to a zero address by

mistake and break the contract. Thus, it will not be possible to update these parameters

because an update is only possible from Governance , and Governance will cannot update

parameters if _timelock is zero.

Recommendation

We recommend adding a validation that the _token , _multiSig , _timelock addresses in

the constructor are not zero.

Update

Fathom's response

Implemented Auditors Recommendation.

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/TimelockController.sol#L165
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/TimelockController.sol#L165
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L67
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L67
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L17
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorTimelockControl.sol#L17
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol#L21
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol#L21

FInDIngs REPORT 61

Oxorio's response

The fix was implemented in

2.3.10 There is no check for zero in

GovernorSettings._setProposalThreshold

Description

In the _setProposalThreshold function it is possible to set _proposalThreshold to 0 .

This can lead to a proposer be able to create a proposal with no voting tokens on the

balance, or with a minimum number of them (e.g. 1 wei). This creates a DDoS attack

threat.

Recommendation

We recommend adding a check that newProposalThreshold is not zero.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in

2.3.11 There is no limit on the number of proposals for

one proposer in Governor

SEVERITY WARNING

STATUS FIXED

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorSettings.sol#L59
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/extensions/GovernorSettings.sol#L59

FInDIngs REPORT 62

Description

In the Governor contract in the propose function there is no limit on the number of

proposals for one proposer. Thus, a proposer can perform a DDoS attack and create an

unlimited number of requests, even in one single block.

Recommendation

We recommend adding a limit to the number of proposals with active and pending

status.

Update

Fathom's response

nextAcceptableProposalTimestamp[msg.sender] = block.timestamp +

proposalTimeDelay;

Oxorio's response

The implemented fix does not fully resolve the problem.

The Proposer can still create an unlimited number of proposals.

We recommend adding a limit for pending proposals for one user.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was not implemented, blacklist was added for DDoS protection in Governor#L202 .

But the important function setBlocklistStatusForProposer , which changes the status of

the user to blocked, has no event, making it impossible for the UI to keep track of the

situation of blocked users.

We recommend adding an event that will be emitted when the user is blocked.

Fathom's response

We added the required event

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol#L36
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol#L36
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/Governor.sol#L202
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/governance/Governor.sol#L202
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/governance/Governor.sol#L376-L378
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/2c40cfad6436ed2a9d9563213e4db222aae31f5e/contracts/dao/governance/Governor.sol#L376-L378
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/4175625c23eeb27907a8dc5a5e9dd40c7593c7b6/contracts/dao/governance/Governor.sol#L369

FInDIngs REPORT 63

2.3.12 A missing check that tokens are on the balance

when calling the payRewards function in the

VaultPackage contract

Description

In the VaultPackage contract when calling the function payRewards there is no processing

of errors such as:

There is no check that tokens are on the balance.

There is no check that the value of amount != 0 .

Recommendation

We recommend adding a check that tokens are on the balance and that amount != 0 , and

return error using custom errors (revert CustomError) or with require .

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in

2.3.13 There is no limit on the maximum number of

active streams in the StakingHandlers contract

SEVERITY WARNING

STATUS FIXED

SEVERITY WARNING

STATUS NO ISSUE

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L31
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L31

FInDIngs REPORT 64

Description

In the StakingHandlers contract there is no limit on the maximum number of active

streams . This creates a situation of an uncontrolled gas consumption when dealing with

contract functions and can lead to DoS.

Recommendation

We recommend adding a parameter that would allow to limit the maximum number of

active streams .

Update

Fathom's response

This will be handled by Stream Manager.

Oxorio's response

Although it was evident that STREAM_MANAGER_ROLE was not a completely secure address,

there have been a number of recent cases when a particular role could be compromised.

We strongly recommend to consider adding appropriate features and validations as

described earlier.

2.3.14 Incorrect processing of contract modifiers

Initializable in the StakingHanders contract

Description

The contract StakingHandlers uses the upgradeable proxy template, at the same time

the work with the modifiers of the Initializable contract, which is inherited from the

AdminPausable , is not performed correctly.

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol

FInDIngs REPORT 65

Recommendation

We recommend adjusting the contract according to OpenZeppelin's recommendations:

The contract constructor must contain a call to the _disableInitializers function to

disable contract initialization at the implementation level and prevent an attacker from

using the contract's implementation

The initializer (in the case of the StakingHandlers contract it is initializeStaking)

must contain the initializer modifier

The initialiser of the parent contract must be with the onlyInitializing modifier (in

the case of the StakingHandlers contract, it is a call to the pausableInit of the

AdminPausable contract)

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.3.15 It is possible for any user to call createStream in

the StakingHandlers contract

Description

In the StakingHandlers contract any user can call the function createStream and run

stream . This bears a risk that attackers could mislead a potential user into giving approve

to the StakingHandlers contract and force them to call createStream . createStream will

charge the user the necessary amount of money for the rewards.

Recommendation

We recommend adding a condition that createStream can only be called from the

streamOwner address.

SEVERITY WARNING

STATUS FIXED

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/common/security/AdminPausable.sol#L28
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/common/security/AdminPausable.sol#L28
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L134
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L134

FInDIngs REPORT 66

Update

Fathom's response

Implemented Auditors Recommendation.

2.3.16 Possible overflow with calculations

Description

In the next lines there is a possible overflow:

RewardsLibrary.sol#L70

RewardsLibrary.sol#L71

RewardsLibrary.sol#L78

RewardsLibrary.sol#L8

RewardsCalculator.sol#L70

RewardsCalculator.sol#L77

RewardsCalculator.sol#L83

RewardsInternals.sol#L15

RewardsInternals.sol#L24-L25

StakingInternals.sol#L47

StakingInternals.sol#L45

StakingInternals.sol#L227-L230

Recommendation

We recommend to use muldiv to multiply elements safely.

We also recommend to update voteLockCoef initialization and add checks that it is not

zero (to prevent division by zero) and that it is not too big in order to avoid overflow in

BoringMath .

Update

Fathom's response

Done where feasible for contract size

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L70
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L70
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L71
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L71
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L78
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L78
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L84
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L84
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L70
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L70
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L77
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L77
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L83
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L83
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L15
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L15
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L24-L25
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L24-L25
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L47
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L47
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L45
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L45
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L227-L230
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L227-L230
https://xn--2-umb.com/21/muldiv/index.html
https://xn--2-umb.com/21/muldiv/index.html
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L42

FInDIngs REPORT 67

Oxorio's response

We recommend fixing these issues completely, if there is already a problem with the size of

the contract, then the code needs to be refactored.

Fathom's response

Implemented Auditors Recommendation for all except for these:

RewardsLibrary.sol#L70

RewardsLibrary.sol#L71

RewardsLibrary.sol#L78

RewardsLibrary.sol#L8

RewardsCalculator.sol#L70 [DONE]

RewardsCalculator.sol#L77 [DONE]

RewardsCalculator.sol#L83 [DONE]

RewardsInternals.sol#L15

RewardsInternals.sol#L24-L25

StakingInternals.sol#L47

StakingInternals.sol#L45

StakingInternals.sol#L227-L230

StakingInternals.sol#L45

Our total Supply is 1 billion. Even if we have 100 billion total supply, the above line will not

overflow as,

nVoteToken = (amount * lockPeriod * POINT_MULTIPLIER) / voteLockCoef / POINT_MULTIPLIER

nVoteToken = 100 * 1e9(amount) * 1e18 * 1e9(lock period) * 1e18(Point Multiplier) / 500

(VoteLockCoef)/ 1e18 (Point Multiplier)

 ~= approx 1e57,

But since nVoteToken in appr.1e77, it will not overflow

StakingInternals.sol#L47

I converted uint128 to uint256 for voteTokenBalance here,

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/reaudit-fixes-final/

contracts/dao/staking/packages/StakingInternals.sol#L59

- StakingInternals.sol#L227-L230

This will not overflow as maxWeightShares, minWeightShares are always less than 1e9 at

max.

RewardsInternals.sol#L15

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L70
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L70
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L71
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L71
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L78
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L78
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L84
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L84
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L70
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L70
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L77
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L77
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L83
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L83
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L15
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L15
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L24-L25
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L24-L25
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L47
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L47
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L45
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L45
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L227-L230
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L227-L230
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L45
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L45
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L47
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L47
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/reaudit-fixes-final/contracts/dao/staking/packages/StakingInternals.sol#L59
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/reaudit-fixes-final/contracts/dao/staking/packages/StakingInternals.sol#L59
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L227-L230
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L227-L230
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L15
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L15

FInDIngs REPORT 68

This will not overflow as:

streams[streamId].schedule.reward[i] =

(streams[streamId].schedule.reward[i] * rewardTokenAmount) /

streams[streamId].maxDepositAmount

If One Billion was the amount of reward Token It will Be:

1e9 * 1e18 * 1e9 * 1e18 / (1e9 * 1e18)

Which is,

1e54 is the upper limit which is again less than 2^256

RewardsInternals.sol#L24-L25

For this:

uint256 reward = ((streams[streamId].rps - userAccount.rpsDuringLastClaimForLock[lockId]

[streamId]) * lock.positionStreamShares) /

 RPS_MULTIPLIER;

RPS_MULTIPLIER changed to 1e36. So max upper limit is 1e36 * 1e9 = approx. 1e45

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/reaudit-fixes-final/

contracts/dao/staking/StakingStorage.sol#L13

Which is again less than 1e77

For others fix is applied.

We accept this issue for the above described lines as calculations shows there is no

overflow.

Oxorio's response

The fix was implemented in contracts:

RewardsLibrary#L75

RewardsLibrary#L82

RewardsLibrary#L87

RewardsCalculator#L74

RewardsCalculator#L81

RewardsCalculator#L87

StakingInternals#L66

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L24-L25
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsInternals.sol#L24-L25
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/reaudit-fixes-final/contracts/dao/staking/StakingStorage.sol#L13
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/reaudit-fixes-final/contracts/dao/staking/StakingStorage.sol#L13
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/library/RewardsLibrary.sol#L75
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/library/RewardsLibrary.sol#L75
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/library/RewardsLibrary.sol#L82
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/library/RewardsLibrary.sol#L82
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/library/RewardsLibrary.sol#L87
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/library/RewardsLibrary.sol#L87
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/RewardsCalculator.sol#L74
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/RewardsCalculator.sol#L74
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/RewardsCalculator.sol#L81
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/RewardsCalculator.sol#L81
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/RewardsCalculator.sol#L87
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/RewardsCalculator.sol#L87
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingInternals.sol#L66
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingInternals.sol#L66

FInDIngs REPORT 69

2.3.17 Multiple streams can be active at the same time

with the same parameters in StakingHandler.sol

Description

In the contract StakingHandler it is possible to add and activate streams with the same

parameters. This can lead to duplicate streams with the same parameters executed by

mistake.

Recommendation

We recommend adding checks that stream is added before submitting a new one.

Update

Fathom's response

This will be handled by Stream Manager.

Oxorio's response

Although it was evident that STREAM_MANAGER_ROLE was not a completely secure address,

there have been a number of recent cases when a particular role could be compromised.

We strongly recommend to consider adding appropriate features and validations as

described earlier.

2.3.18 There is no limit for the amount of schedules on

streams in StakingHandlers

SEVERITY WARNING

STATUS NO ISSUE

SEVERITY WARNING

STATUS NO ISSUE

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L103-L111

FInDIngs REPORT 70

Description

There is no limit for the amount of schedules on streams in the contract StakingHandlers .

This can cause the block gas limit to be exceeded.

Recommendation

We recommend limiting values of scheduleTimes or scheduleRewards .

Update

Fathom's response

This will be handled by Stream Manager.

Oxorio's response

Although it was evident that STREAM_MANAGER_ROLE was not a completely secure address,

there have been a number of recent cases when a particular role could be compromised.

We strongly recommend to consider adding appropriate features and validations as

described earlier.

2.3.19 It is possible to remove tokens that are used by

another contract in VaultPackage

Description

Calling the removeSupportedToken function in the VaultPackage contract removes tokens

which are used in the StakingHandler contract to pay rewards and staked tokens.

Recommendation

We recommend adding logic to check that tokens are not used in any other contract before

removing them.

Update

Fathom's response

Implemented Auditors Recommendation.

SEVERITY WARNING

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L103-L111
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L103-L111
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L47-L51
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L47-L51

FInDIngs REPORT 71

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 72

2.4 InFO

2.4.1 There's no logging of reverted transactions in

MultiSigWallet

Description

In the function executeConfirmation there's no logging of failed transactions.

(bool success,) = transaction.to.call{ value: transaction.value }(transaction.data);

require(success, "tx failed");

Recommendation

We recommend replace this construction for the next one:

error TransactionRevered(bytes data);

...

(bool success, bytes data) = transaction.to.call{ value: transaction.value }(transaction.data);

if (success) {

 emit ExecuteTransaction(msg.sender, _txIndex);

} else {

 revert TransactionRevered(data);

}

This will allow monitoring of suspicious activity that involves using of MultiSigWallet .

Update

Fathom's response

Implemented Auditors Recommendation.

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L144
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L144

FInDIngs REPORT 73

Oxorio's response

if (success) {

 emit ExecuteTransaction(msg.sender, _txIndex);

} else {

 revert TransactionRevered(data);

}

emit ExecuteTransaction(msg.sender, _txIndex);

Two identical ExecuteTransaction events will be emitted on successful execution of the

transaction. We recommend removing one from the MultiSigWallet#L218 .

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in MultiSigWallet#L229 .

2.4.2 Non-optimal packing of the Transaction structure

in MultiSigWallet

Description

The structure Transaction uses a non-optimized storage layout.

Recommendation

We recommend optimizing storage layout the following way:

struct Transaction {

 address to;

 bool executed;

 bytes data;

 uint value;

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/treasury/MultiSigWallet.sol#L231-L238
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/treasury/MultiSigWallet.sol#L231-L238
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/treasury/MultiSigWallet.sol#L229
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/treasury/MultiSigWallet.sol#L229
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L9
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L9

FInDIngs REPORT 74

 uint numConfirmations;

}

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.4.3 Incorrect status check in execute function in

Governor

Description

In the execute function there is an incorrect check of Proposal status:

require(status == ProposalState.Succeeded || status == ProposalState.Queued, "Governor:

proposal not successful");

In the MainTokenGovernor.sol contract, that inherits from Governor , the execution is

passed to the TimelockController contract. For a transaction to be executed through

TimelockController it must only have the ProposalState.Queued status. Otherwise the

gas will be wasted and the execute call will be reverted.

Recommendation

We recommend changing the status check for Proposal :

require(status == ProposalState.Queued, "Governor: proposal not successful");

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L76
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol#L76
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/MainTokenGovernor.sol

FInDIngs REPORT 75

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.4.4 _minDelay can be set to zero in

TimelockController

Description

In the TimelockController contract the _minDelay parameter can be set to 0 during

initialization and in the updateDelay function. This will result in batch being able to be

executed in the same block it was queued for execution.

Recommendation

We recommend adding a check that _minDelay != 0 .

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L67
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L149
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L149
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 76

2.4.5 There is a redundant initialized check in

VMainToken

Description

require(!initialized, "already init");

initialized = true;

The initToken function contains redundant code with checking and setting the value of

the initialized parameter, since this check already exists in the initializer modifier in

the initToken function.

Recommendation

We recommend deleting these lines.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.4.6 There is redundant code in the VMainToken

contract

SEVERITY INFO

STATUS FIXED

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L24
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L24
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 77

Description

The _mint and _burn functions in the VMainToken contract are redundant and essentially

do not overload the parent functions.

Recommendation

We recommend deleting these functions.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fixes have been made <>, but there is still one function with redundant code:

_afterTokenTransfer , because it too does not change the behavior of the inherited

contract and can be deleted.

2.4.7 The Governor and TimeLockController do not

support the ERC721 and ERC1155 tokens

Description

The Governor and TimelockController contracts lack the following methods:

/**

 * @dev See {IERC721Receiver-onERC721Received}.

 */

function onERC721Received(

 address,

 address,

 uint256,

 bytes memory

) public virtual override returns (bytes4) {

SEVERITY INFO

STATUS NO ISSUE

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L74
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L74
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L78
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L78
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/Governor.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol

FInDIngs REPORT 78

 return this.onERC721Received.selector;

}

/**

 * @dev See {IERC1155Receiver-onERC1155Received}.

 */

function onERC1155Received(

 address,

 address,

 uint256,

 uint256,

 bytes memory

) public virtual override returns (bytes4) {

 return this.onERC1155Received.selector;

}

/**

 * @dev See {IERC1155Receiver-onERC1155BatchReceived}.

 */

function onERC1155BatchReceived(

 address,

 address,

 uint256[] memory,

 uint256[] memory,

 bytes memory

) public virtual override returns (bytes4) {

 return this.onERC1155BatchReceived.selector;

}

Thus Governor and TimeLockController do not support tokens with ERC721 and

ERC1155 standards.

Recommendation

We recommend implementing these functions if the Governor and TimeLockController

contracts require support for the ERC721 and ERC1155 tokens. And also create a list of

trusted tokens that can work with (see above - ERC20 standard tokens transfer possibility).

Update

Fathom's response

There is no provision for ERC721 and ERC1155 tokens to be deposited into the contract.

FInDIngs REPORT 79

2.4.8 The addSupportedToken and

removeSupportedToken calls have an redundant

pausable modifier in the VaultPackage contract

Description

In the VaultPackage contract the calls addSupportedToken and removeSupportedToken

have a redundant modifier pausable since the calls are only possible from the

DEFAULT_ADMIN_ROLE address and the modifier pausable contains the following condition

require((paused & flag) == 0 || hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "paused contract");

where the paused condition will be ignored.

Recommendation

We recommend reconsidering the addSupportedToken and removeSupportedToken

function modifiers or removing the pausable modifier.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L41
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L41
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L47
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L47
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 80

2.4.9 There are no checks that admin , proposers and

executors are not zero addresses in

TimelockController

Description

In the contract TimelockController constructor there are no checks that admin ,

proposers and executors are not zero addresses.

Recommendation

We recommend adding checks that admin , proposers and executors are not zero

addresses.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.4.10 Unused import of StakingStructs in

StakingStorage

Description

Import of StakingStructs in the StakingStorage contract is never used.

SEVERITY INFO

STATUS FIXED

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L49-L69
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/governance/TimelockController.sol#L49-L69
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/StakingStorage.sol#L7
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/StakingStorage.sol#L7

FInDIngs REPORT 81

Recommendation

We recommend removing it to keep the codebase clean.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.4.11 Unused constant ONE_MONTH in

StakingGettersHelper

Description

The ONE_MONTH constant in the StakingGettersHelper contract is never used.

Recommendation

We recommend removing it to keep the codebase clean.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/helpers/StakingGettersHelper.sol#L13
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/helpers/StakingGettersHelper.sol#L13
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 82

2.4.12 Non-optimal storage layout for Stream struct in

StakingStructs

Description

Stream struct in the StakingStructs contract has non-optimal storage layout.

Recommendation

We recommend moving StreamStatus definition after the rewardToken line in the struct

Stream in order to store values in one slot.

struct Stream {

 address owner; // stream owned by the ERC-20 reward token owner

 address manager; // stream manager handled by Main stream manager role

 address rewardToken;

 StreamStatus status;

 uint256 rewardDepositAmount; // the reward amount that has been deposited by a third party

 uint256 rewardClaimedAmount; /// how much rewards have been claimed by stakers

 uint256 maxDepositAmount; // maximum amount of deposit

 uint256 minDepositAmount; // minimum amount of deposit

 uint256 tau; // pending time prior reward release

 uint256 rps; // Reward per share for a stream j>0

 Schedule schedule;

}

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/StakingStructs.sol#L54-L66
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/StakingStructs.sol#L54-L66
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

FInDIngs REPORT 83

2.4.13 Unnecessary ' in a RewardsLibrary comment

Description

There is an explicit ' in the comment in RewardsLibrary.sol#L82 line.

Recommendation

We recommend removing ' from the comment.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

Library was removed at commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e

2.4.14 There is a typo in a comment in

StakingInternals

Description

There is a typo in the word "have" in the following line StakingInternals.sol#L95 .

// user does not hae enough voteToken, it is still able to burn and unlock

Recommendation

We recommend changing it to:

SEVERITY INFO

STATUS NO ISSUE

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L82
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L82
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/commit/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L95
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingInternals.sol#L95

FInDIngs REPORT 84

// user does not have enough voteToken, it is still able to burn and unlock

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in StakingInternals#L119 .

2.4.15 Redundant check for maxDepositAmount > 0

in RewardsCalculator

Description

There is a redundant check for maxDepositAmount > 0 in the next lines:

RewardsCalculator.sol

RewardsLibrary.sol

Since minDepositAmount is already greater than 0 and maxDepositAmount must be bigger

than minDepositAmount there is no need to check that maxDepositAmount > 0 .

Recommendation

We recommend removing requirement of maxDepositAmount > 0 for gas savings and

improving code readability.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The check remains in the RewardsLibrary#L21 :

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingInternals.sol#L119
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/packages/StakingInternals.sol#L119
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L21-L23
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/library/RewardsLibrary.sol#L21-L23
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/library/RewardsLibrary.sol#L21
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/library/RewardsLibrary.sol#L21

FInDIngs REPORT 85

require(maxDepositAmount > 0, "No Max Deposit");

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in RewardsLibrary.sol#L20-L24 .

2.4.16 It is not possible to withdraw tokens that were sent

by mistake

Description

It is not possible to withdraw tokens that were sent by mistake it the following contracts:

RewardsCalculator.sol

StakingPackage.sol

VMainToken.sol

MainToken.sol

Recommendation

We recommend adding sweep function to withdraw tokens that were sent by mistake.

Update

Fathom's response

There is no provision of tokens being sent in those contract.

SEVERITY INFO

STATUS NO ISSUE

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/library/RewardsLibrary.sol#L20-L24
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/library/RewardsLibrary.sol#L20-L24
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingPackage.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingPackage.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/MainToken.sol
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/MainToken.sol

FInDIngs REPORT 86

2.4.17 Unused import of ReentracyGuard in

StakingHandlers

Description

There is import of ReentracyGuard in the StakingHandlers contract but nonReentrant

from this class is never used in StakingHandlers .

Recommendation

We recommend removing the unused import.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

2.4.18 Сustom initializer modifier is used instead of

one from OpenZeppelin

Description

It is better to use Openzeppelin initializer instead of custom modifiers in the next

functions:

StakingHandler.sol#L33

VaultPackage.sol#L18

SEVERITY INFO

STATUS FIXED

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L11
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L11
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol#L83
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol#L83
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L33
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L33
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L18
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/vault/packages/VaultPackage.sol#L18

FInDIngs REPORT 87

VMainToken.sol#L24

Recommendation

We recommend using initializer and initializable modifiers from Openzeppelin

instead of implementing custom modifiers.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The recommendation has not been fully implemented.

require(!vaultInitialized, "Vault: Already Initialized");

vaultInitialized = true;

The vaultInitialized variable becomes meaningless after adding the initializer

modifier to the initVault function in VaultPackage contract.

In VMainToken contract initToken function uses initializer , additional bool variable

initialized was not removed.

We recommend removing custom initializer variables and validations.

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in contracts:

VaultPackage#L14 .

VMainToken#L12 .

2.4.19 Stream manager, treasury manager and admin

represent the same account in StakingHandlers

SEVERITY INFO

STATUS NO ISSUE

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L24
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L24
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/vault/packages/VaultPackage.sol#L27-L28
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/vault/packages/VaultPackage.sol#L15
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/staking/vault/packages/VaultPackage.sol#L15
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/tokens/VMainToken.sol#L16
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/daa757804b549f91904ec18af91259f7fe434883/contracts/dao/tokens/VMainToken.sol#L16
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/vault/packages/VaultPackage.sol#L14
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/staking/vault/packages/VaultPackage.sol#L14
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/tokens/VMainToken.sol#L12
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/15308669b0c2aaf8956010051fa64d9ea5dd4b48/contracts/dao/tokens/VMainToken.sol#L12

FInDIngs REPORT 88

Description

In the initializeStaking function in the StakingHandlers contract multiple roles are

assigned to the same admin address.

Recommendation

We recommend to transfer treasury role after the deployment and the staking setting.

Admin and manager of the initial stream should be two different roles.

Update

Fathom's response

This is initial setup to make it easier. We will share roles after some time.

2.4.20 Revert message strings are too long

Description

VMainToken.sol#L65-L68

MultiSigWallet#L30

MultiSigWallet.sol#L55

MultiSigWallet.sol#L77

After the revert message string is split into 32-byte sized chunks and stored in memory using

mstore , the memory offsets are given to revert(offset, length) . For chunks shorter

than 32 bytes, and for low --optimize-runs values (usually even the default value of 200),

instead of using push32(val) (where val is the 32 byte hexadecimal representation of the

string with zero padding on the least significant bits) the Solidity compiler replaces it by

shl(value, short-value) , where short-value does not have any zero padding. This

saves the total amount of bytes in the deploy code and therefore saves deploy time cost, at

the expense of extra 6 gas consumption during runtime.

This means that shorter revert strings saves deploy time costs of the contract. Note that this

is not relevant for high values of --optimize-runs since push32 value will not be replaced

by a shl(value, short-value) equivalent by the Solidity compiler.

SEVERITY INFO

STATUS NO ISSUE

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L33
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L33
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L65-L68
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/tokens/VMainToken.sol#L65-L68
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L30
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L30
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L55
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L55
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L77
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L77

FInDIngs REPORT 89

Going back, each 32 byte chunk of the string requires an extra mstore . That is, additional

cost for mstore , memory expansion costs, as well as stack operations. Note that this

runtime cost is only relevant when the revert condition is met.

Overall, shorter revert strings can save deploy time as well as runtime costs.

Recommendation

We recommend making revert strings shorter.

Note that if your contracts already allow Solidity 0.8.4 and above, then consider using

custom errors. They provide more gas efficiency and also allow developers to describe the

errors in detail using NatSpec. The main disadvantage of this approach is that some tooling

may not have proper support for it yet.

Update

Fathom's response

Not Done, right now. Lots of changes for revert strings might be required right now.

2.4.21 Unnecessary reads from storage

Description

In the next lines using MLOAD and MSTORE to cache the variable in memory saves more gas

than SLOAD , since they use only 3 gas, instead of the initial 100:

MultiSigWallet.sol#L138

StakingHandler.sol#L191

StakingHandler.sol#L200

StakingHandler.sol#L210

StakingHandler.sol#L237

StakingHandler.sol#L244

Recommendation

We recommend caching this storage variable in memory to reduce unnecessary reads from

storage and save more gas.

SEVERITY INFO

STATUS NO ISSUE

https://blog.soliditylang.org/2021/04/21/custom-errors
https://docs.soliditylang.org/en/latest/natspec-format.html
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L138
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/treasury/MultiSigWallet.sol#L138
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L191
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L191
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L200
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L200
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L210
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L210
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L237
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L237
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L244
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/StakingHandler.sol#L244

FInDIngs REPORT 90

Update

Fathom's response

Not Done, increases contract size.

2.4.22 Misleading check (scheduleTimeLength > 0)

in the RewardsCalculator

Description

In the function _getStartEndScheduleIndex in the contract RewardsCalculator there is

the following condition:

require(scheduleTimeLength > 0, "bad schedules");

This condition allows scheduleTimeLength value to be set to 1. This can lead to underflow

and incorrect operation of cycles further down the code.

Recommendation

We recommend changing it to

require(scheduleTimeLength >= 2, "bad schedules");

or completely remove this check, since this condition is already checked in

validateStreamParameters() when the stream is created.

Update

Fathom's response

Implemented Auditors Recommendation.

Oxorio's response

The fix was implemented in commit with identifier

2c40cfad6436ed2a9d9563213e4db222aae31f5e.

SEVERITY INFO

STATUS FIXED

https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L94
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L94
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L105
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/blob/5e9f3a23bd2b6deb9babe1a3ad984fd84cf51b7a/contracts/dao/staking/packages/RewardsCalculator.sol#L98
https://github.com/Into-the-Fathom/fathom-dao-smart-contracts/tree/2c40cfad6436ed2a9d9563213e4db222aae31f5e

COnClUsIOn

3

COnClUsIOn 92

The following table contains the total number of issues that were found during audit:

All issues were fixed as part of the current reaudit. In addition to the remarks in the reaudit,

the code base was even changed.

We recommend performing a full-fledged audit of the actual version of the code.

Level Amount

CRITICAL 8

MAJOR 26

WARNING 19

INFO 22

Total 75

THAnK YOU FOR CHOOsIng

	Fathom DAO. Reaudit
	Intro
	Disclaimer
	About Oxorio
	Security Assessment Methodology
	Findings Classification
	Severity Level Reference
	Status Level Reference

	Project overview
	Audit Scope

	Findings Report
	CRITICAL
	There's no owners array length validation in the constructor of MultiSigWallet
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Adding a new owner doesn't change necessary amount of signatures in MultiSigWallet
	Description
	Recommendation
	Update
	Fathom's response

	Removing owner without revokeConfirmation transaction in MultiSigWallet
	Description
	Recommendation
	Update
	Fathom response
	Oxorio's response
	Fathom's response
	Oxorio's response
	Fathom's response

	There is no function that implements the _cancel proposal in MainTokenGovernor
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Changing the timelock address may cause re-execution of the proposals in GovernorTimelockControl
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	The initVault and initAdminAndOperator functions can be initialized from any address in the VaultPackage contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is no check that stream is active in the StakingHandler contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Calling the updateConfig function may block the work of the StakingHandlers contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response

	MAJOR
	In MultiSigWallet there's no parameter defining minimum amount of signatures
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response

	Transaction does not have a lifetime parameter in MultiSigWallet
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Governance can delete TimelockAdmin and the contract will lose its control in TimelockController
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	There is no validation for maxTargets when executing in Governor
	Description
	Recommendation
	Fathom's response
	Oxorio's response

	There is no possibility to update multisig in Governor
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is no emergency shutdown mode in Governor
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	It is possible to set a null address in GovernorTimelockControl when updating timelock
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response

	There is no validation for null values for newQuorumNumerator in GovernorVotesQuorumFraction
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	When MINTER_ROLE is added to VMainToken, the isWhiteListed list does not update
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	There is no possibility to transfer standard ERC20 tokens from the Governance balance in MainTokenGovernor
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	There is no option to migrate to another contract in the VaultPackage contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	There is a DoS possibility when calling updateVault in the StakingHandlers contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	There is no emergency suspension of the rewards payment in the VaultPackage contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Unsafe use of the transfer and transferFrom functions in StakingHandlers and VaultPackage
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Tokens that get into the VaultPackage balance can be used to withdraw rewards in the contract StakingHandler
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Calling initializeStaking in the StakingHandlers contract does not allocate rewards for MAIN_STREAM in VaultPackage
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Updating rpsDuringLastClaimForLock for inactive stream in the StakingInternals contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is a possibility for a manager to remove all streams in order to steal all pending rewards in StakingHandlers
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	MINTER_ROLE and WHITELISTER_ROLE have the same value in the VMainToken
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Transaction should be marked as executed if the call fails
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Admin role can be revoked forever by mistake in VMainToken
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	It is possible for attacker to create active locks to force users to reach the lock limit in StakingHandlers
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	prohibitedEarlyWithdraw is not set to false for lockid after unlocking in StakingHandlers
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Calling unlock, earlyUnlock and unlockPartially before claimRewards will result in loss of rewards in StakingHandlers
	Description
	Recommendation
	Update
	Fathom's response

	Share weight drop formula is incorrect in StakingInternals
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Penalty can be bigger than stake in the StakingInternals
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	WARNING
	Modifier onlyOwnerOrGov creates a complex confirmation structure in case of Governance calls in the MultiSigWallet
	Description
	Recommendation
	Update
	Fathom's response

	No parameter check when adding transaction in MultiSigWallet
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response
	Fathom's response

	Missing validation, that the bytecode of address _to did not change while running a transaction in MultiSigWallet
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response

	There's no ETH balance validation when adding a non-zero transaction _value in MultiSigWallet
	Description
	Recommendation
	Fathom's response
	Oxorio's response

	There is no time limit for executing proposal in Governor
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	There is no check for gas consumption in Governor
	Description
	Recommendation
	Update
	Fathom's response

	confirmProposal is possible for both active and inactive proposals in Governor
	Description
	Recommendation
	Update
	Fathom's response

	There is no check for the msg.value value available for execution in Governor and TimelockController
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	There is no check for zero value for _token, _multiSig and _timelock in Governor, GovernorTimelockControl, MainTokenGovernor
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is no check for zero in GovernorSettings._setProposalThreshold
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is no limit on the number of proposals for one proposer in Governor
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response
	Fathom's response

	A missing check that tokens are on the balance when calling the payRewards function in the VaultPackage contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is no limit on the maximum number of active streams in the StakingHandlers contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Incorrect processing of contract modifiers Initializable in the StakingHanders contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	It is possible for any user to call createStream in the StakingHandlers contract
	Description
	Recommendation
	Update
	Fathom's response

	Possible overflow with calculations
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Multiple streams can be active at the same time with the same parameters in StakingHandler.sol
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is no limit for the amount of schedules on streams in StakingHandlers
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	It is possible to remove tokens that are used by another contract in VaultPackage
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	INFO
	There's no logging of reverted transactions in MultiSigWallet
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Non-optimal packing of the Transaction structure in MultiSigWallet
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Incorrect status check in execute function in Governor
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	_minDelay can be set to zero in TimelockController
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is a redundant initialized check in VMainToken
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is redundant code in the VMainToken contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	The Governor and TimeLockController do not support the ERC721 and ERC1155 tokens
	Description
	Recommendation
	Update
	Fathom's response

	The addSupportedToken and removeSupportedToken calls have an redundant pausable modifier in the VaultPackage contract
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There are no checks that admin, proposers and executors are not zero addresses in TimelockController
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Unused import of StakingStructs in StakingStorage
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Unused constant ONE_MONTH in StakingGettersHelper
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Non-optimal storage layout for Stream struct in StakingStructs
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Unnecessary ' in a RewardsLibrary comment
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	There is a typo in a comment in StakingInternals
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Redundant check for maxDepositAmount > 0 in RewardsCalculator
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	It is not possible to withdraw tokens that were sent by mistake
	Description
	Recommendation
	Update
	Fathom's response

	Unused import of ReentracyGuard in StakingHandlers
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Сustom initializer modifier is used instead of one from OpenZeppelin
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response
	Fathom's response
	Oxorio's response

	Stream manager, treasury manager and admin represent the same account in StakingHandlers
	Description
	Recommendation
	Update
	Fathom's response

	Revert message strings are too long
	Description
	Recommendation
	Update
	Fathom's response

	Unnecessary reads from storage
	Description
	Recommendation
	Update
	Fathom's response

	Misleading check (scheduleTimeLength > 0) in the RewardsCalculator
	Description
	Recommendation
	Update
	Fathom's response
	Oxorio's response

	Conclusion

