
DECEMBER 25, 2024

CLASH OF

COINS CLAIM

SMART

CONTRACTS

SECURITY

AUDIT REPORT

2

CONTENTS

1. AUDIT OVERVIEW ... 4

1.1. PROJECT BRIEF ... 5

1.2. PROJECT TIMELINE .. 6

1.3. AUDITED FILES ... 7

1.4. PROJECT OVERVIEW .. 8

1.5. CODEBASE QUALITY ASSESSMENT ... 9

1.6. SUMMARY OF FINDINGS .. 11

1.7. CONCLUSION .. 13

2. FINDINGS REPORT ... 14

2.1. CRITICAL ... 15

2.2. MAJOR .. 16

2.3. WARNING ... 17

W-01 msg.sender address usage as owner in ClaimSoftCurrency, RetroDropWithMerkle 17

W-02 nonce can be reused with different points in ClaimSoftCurrency 18

W-03 Missing condition that points is not zero in RetroDropWithMerkle 19

W-04 Minting only points or only coins is not allowed in ClaimRewards 20

2.4. INFO .. 21

I-01 Solidity version can be specified as 0.8.27 .. 21

I-02 Missing record in RetroDropWithMerkle .. 22

I-03 Specify the user instead of msg.sender as a separate function parameter in

RetroDropWithMerkle, ClaimSoftCurrency .. 23

I-04 Incorrect error message in ClaimSoftCurrency ... 24

I-05 Replace require with custom errors ... 25

I-06 Incomplete description in the README file ... 26

I-07 Redundant error in ClaimSoftCurrency .. 27

I-08 Rename claimedPoints to pointClaimed in RetroDropWithMerkle 28

3

I-09 Missing error descriptions in ClaimSoftCurrency, RetroDropWithMerkle 29

I-10 Unnecessary <= 0 condition for uint in ClaimRewards ... 30

3. DEPLOY VERIFICATION ... 31

3.1. SCOPE ... 32

3.2. CONCLUSION .. 33

3.3. VERIFICATION .. 34

Network specific behavior .. 34

Scope checking ... 34

Audit report investigation .. 34

Deploy script check ... 35

Deployment verification ... 35

Initialization parameters check ... 36

Role model verification .. 36

Storage Check ... 36

Documentation Verification ... 37

4. APPENDIX ... 38

4.1. DISCLAIMER ... 39

4.2. SECURITY ASSESSMENT METHODOLOGY .. 40

4.3. CODEBASE QUALITY ASSESSMENT REFERENCE .. 42

Rating Criteria ... 43

4.4. FINDINGS CLASSIFICATION REFERENCE ... 44

Severity Level Reference .. 44

Status Level Reference ... 44

4.5. ABOUT OXORIO ... 46

AUDIT

OVERVIEW1

AUDIT OVERVIEW 5

1.1 PROjECT BRIEF

Title Description

Client Clash of Coins

Project name Clash of Coins claim contracts

Category Gaming

Website https://clashofcoins.com/

Repository https://github.com/onewayblock/coc-claim-contracts

Documentation https://github.com/onewayblock/coc-claim-contracts/blob/main/README.md

Initial Commit 63918d3513f13a6311cf3519b1b59c03682a0c1d

Final Commit a8facc20dc1097f27a2463ddf9e2e530f12ceb29

Platform L2

Network Base

Languages Solidity

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project Manager Nataly Demidova - nataly@oxor.io

https://clashofcoins.com/
https://github.com/onewayblock/coc-claim-contracts
https://github.com/onewayblock/coc-claim-contracts/blob/main/README.md
https://github.com/onewayblock/coc-claim-contracts/commit/63918d3513f13a6311cf3519b1b59c03682a0c1d
https://github.com/onewayblock/coc-claim-contracts/commit/a8facc20dc1097f27a2463ddf9e2e530f12ceb29
mailto:am@oxor.io
mailto:nataly@oxor.io

AUDIT OVERVIEW 6

1.2 PROjECT TIMELINE

The key events and milestones of the project are outlined below.

Date Event

December 10, 2024 Client approached Oxorio requesting an audit.

December 12, 2024 The audit team commenced work on the project.

December 13, 2024 Submission of the preliminary report.

December 19, 2024 Submission of the comprehensive report.

December 23, 2024 Client feedback on the report was received.

December 25, 2024 Submission of the final report incorporating client’s verified fixes.

AUDIT OVERVIEW 7

1.3 AUDITED FILES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that

estimates logical depth and decision points like loops and conditional branches) by the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

File Lines Blanks Comments Code Complexity

1 contracts/ClaimSoftCurrency.sol 91 16 31 44 9

2 contracts/RetroDropWithMerkle.sol 79 13 27 39 3

Total 170 29 58 83 6

https://github.com/boyter/scc
https://github.com/onewayblock/coc-claim-contracts/blob/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/ClaimSoftCurrency.sol
https://github.com/onewayblock/coc-claim-contracts/blob/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/RetroDropWithMerkle.sol
https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 8

1.4 PROjECT OVERVIEW

The ClashOfCoins project implements a series of smart contracts designed to facilitate

claim-based mechanisms for an on-chain gaming ecosystem. The core functionality revolves

around enabling users to claim rewards based on predefined criteria and interact with the

platform's token economy. The contracts are written in Solidity and are optimized for

deployment on the Base blockchain. Key features include reward distribution logic,

ownership management, and mechanisms to ensure the integrity and security of the

claiming process. The contracts also leverage access control patterns to maintain

operational security.

The primary goal of the project is to establish a transparent and efficient claim and reward

system for users participating in the ClashOfCoins game. Key functionalities include

managing reward allocation, validating user eligibility, and integrating token-based

interactions within the ecosystem. Notable architectural features include role-based access

controls and mechanisms to mitigate common smart contract vulnerabilities, ensuring the

system's robustness and reliability in a decentralized environment.

AUDIT OVERVIEW 9

1.5 CODEBASE QUALITY

ASSESSMENT

The Codebase Quality Assessment table offers a comprehensive assessment of various

code metrics, as evaluated by our team during the audit, to gauge the overall quality and

maturity of the project’s codebase. By evaluating factors such as complexity, documentation

and testing coverage to best practices, this table highlights areas where the project excels

and identifies potential improvement opportunities. Each metric receives an individual

rating, offering a clear snapshot of the project's current state, guiding prioritization for

refactoring efforts, and providing insights into its maintainability, security, and scalability.

For a detailed description of the categories and ratings, see the Codebase Quality

Assessment Reference section.

Category Assessment Result

Access Control

The project's codebase implements a robust access

control mechanism with multiple differentiated roles to

manage system functionalities efficiently.

Excellent

Arithmetic
The smart contract code does not contain any arithmetic

operations.

Not

Applicable

Complexity
The code is consistent, and follows best practices in

coding styles, making it easy to comprehend and review.
Excellent

Data Validation
The project ensures data validation across all

components.
Excellent

Decentralization

The project does not incorporate a decentralized

approach to management, and therefore, the metric is

not applicable in this context.

Not

Applicable

Documentation
The project documentation covers all components, is up-

to-date, and is centralized in a single source.
Excellent

External

Dependencies

The project does not interact with any external smart

contracts in its logic; therefore, this metric is not

applicable in this context.

Not

Applicable

Error Handling

The project demonstrates robust exception handling

throughout the codebase. Custom errors with clear

naming and descriptions are used.

Excellent

Logging and

Monitoring

The project exhibits excellent logging capabilities,

recording all important events within the system.
Excellent

AUDIT OVERVIEW 10

Category Assessment Result

Low-Level Calls

The project is free from low-level calls, ensuring a higher

level of security by avoiding potential pitfalls associated

with direct, low-level interactions with the blockchain.

Not

Applicable

Testing and

Verification

The codebase exhibits commendable test coverage,

demonstrating a strong commitment to verifying

functionality and reliability.

Excellent

AUDIT OVERVIEW 11

1.6 SUMMARY OF FINDINgS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

This table provides an overview of the findings across the audited files, categorized by

severity level. The table enables to quickly identify areas that require immediate attention

and prioritize remediation efforts accordingly.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 0 0 0 0 0

MAJOR 0 0 0 0 0

WARNING 4 0 3 1 0

INFO 10 0 7 3 0

TOTAL 14 0 10 4 0

File TOTAL CRITICAL MAJOR WARNING INFO

contracts/ClaimSoftCurrency.sol 5 0 0 2 3

https://github.com/onewayblock/coc-claim-contracts/blob/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/ClaimSoftCurrency.sol

AUDIT OVERVIEW 12

File TOTAL CRITICAL MAJOR WARNING INFO

contracts/RetroDropWithMerkle.sol 5 0 0 2 3

contracts/ClaimRewards.sol 2 0 0 1 1

contracts/ClaimSoftCurrency.sol 2 0 0 0 2

contracts/RetroDropWithMerkle.sol 2 0 0 0 2

https://github.com/onewayblock/coc-claim-contracts/blob/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/RetroDropWithMerkle.sol
https://github.com/onewayblock/coc-claim-contracts/blob/a8facc20dc1097f27a2463ddf9e2e530f12ceb29/contracts/ClaimRewards.sol
https://github.com/onewayblock/coc-claim-contracts/blob/15865bdf3e778674be35e2a422c8e83656544efd/contracts/ClaimSoftCurrency.sol
https://github.com/onewayblock/coc-claim-contracts/blob/15865bdf3e778674be35e2a422c8e83656544efd/contracts/RetroDropWithMerkle.sol

AUDIT OVERVIEW 13

1.7 CONCLUSION

Clash of Coins claim contracts have been audited, and no critical or major issues were

found. However, a few recommendations were marked as warnings and informational.

Some changes were proposed to follow best practices, reduce the potential attack surface,

simplify code maintenance, and improve readability. No severe attack vectors or broken

features were identified.

All identified issues have been appropriately fixed or acknowledged by the client, so the

contracts are deemed secure to use according to our security criteria. The final commit

identifier with all fixes is a8facc20dc1097f27a2463ddf9e2e530f12ceb29. This version is

recommended for deployment and further system testing.

https://github.com/onewayblock/coc-claim-contracts/commit/a8facc20dc1097f27a2463ddf9e2e530f12ceb29

FINDINgS

REPORT2

FINDINgS REPORT 15

2.1 CRITICAL

No critical issues found.

FINDINgS REPORT 16

2.2 MAjOR

No major issues found.

FINDINgS REPORT 17

2.3 WARNINg

Location

Description

In the mentioned locations, the msg.sender address is used as the owner for a newly

deployed contract. From a best practice perspective, it is not advisable to transfer the

msg.sender dispatcher address as the owner, as the deployer is often a hot wallet.

Recommendation

We recommended specifying the owner as a separate parameter owner and ensuring a

non-zero address, which is already checked in the Ownable contract.

Update

Fixed at 15865bdf3e778674be35e2a422c8e83656544efd

W-01
msg.sender address usage as owner in

ClaimSoftCurrency , RetroDropWithMerkle

Severity WARNING

Status • FIXED

File Location Line

 contract ClaimSoftCurrency > constructor 35

 contract RetroDropWithMerkle > constructor 26

ClaimSoftCurrency.sol

RetroDropWithMerkle.sol

https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/ClaimSoftCurrency.sol#L35
https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/RetroDropWithMerkle.sol#L26
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd

FINDINgS REPORT 18

Location

Description

In the function claimPoints of the contract ClaimSoftCurrency , it is possible to use the

same nonce with different points . In this case, the messageHash will differ, but the nonce

will remain the same, allowing potential re-use.

Recommendation

We recommended not using nonce as a function parameter but instead managing it as part

of the contract. Specifically, add a mapping(address => uint256) public nonces; and

increment the nonce for each claim, like so: nonces[account]++ . This ensures that each

nonce is unique and sequential, preventing attempts to reuse the same nonce.

This approach makes each transaction unique with its own nonce , which avoids

redundancy. The messageHash will also naturally be different for each user action, and the

following design ensures it cannot be re-executed:

require(!executedHashes[messageHash], "Tx already executed");

executedHashes[messageHash] = true;

Update

Fixed at 15865bdf3e778674be35e2a422c8e83656544efd

W-02
nonce can be reused with different points in ClaimS

oftCurrency

Severity WARNING

Status • FIXED

File Location Line

 contract ClaimSoftCurrency > function claimPoints 47ClaimSoftCurrency.sol

https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/ClaimSoftCurrency.sol#L47
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd

FINDINgS REPORT 19

Location

Description

In the function isParticipating of the contract RetroDropWithMerkle , there is no

verification to ensure that points is non-zero, as required by the claimPoints function.

Recommendation

We recommended adding a check to ensure that the points variable value is not zero.

Update

Fixed at 15865bdf3e778674be35e2a422c8e83656544efd

W-03
Missing condition that points is not zero in RetroDro

pWithMerkle

Severity WARNING

Status • FIXED

File Location Line

 contract RetroDropWithMerkle > function isParticipating 70RetroDropWithMerkle.sol

https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/RetroDropWithMerkle.sol#L70
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd

FINDINgS REPORT 20

Location

Description

In the function claimRewards of the contract ClaimRewards , there are checks to ensure

that the points and coins variables are not equal to zero:

 if (points <= 0) {

 revert InvalidPoints();

 }

 if (coins <= 0) {

 revert InvalidCoins();

 }

However, since both checks are mandatory, it is not possible to mint only points or only

coins.

Recommendation

We recommend adding the ability to mint only points or only coins if this aligns with the

business logic of the contract.

Update

Clash of Coins' Response

According to the product logic associated with the contract, the user can only receive both

coins and points together. Scenarios where only one entity can be received are not

provided for in the product. Therefore, at this stage, we will not make changes. However, we

agree with the comment that a more flexible approach would be preferable.

W-04
Minting only points or only coins is not allowed in C

laimRewards

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract ClaimRewards > function claimRewards 70-76ClaimRewards.sol

https://github.com/onewayblock/coc-claim-contracts/tree/a8facc20dc1097f27a2463ddf9e2e530f12ceb29/contracts/ClaimRewards.sol#L70-L76

FINDINgS REPORT 21

2.4 INFO

Location

Description

In all mentioned locations, an unlocked compiler version is used (with ^). This can lead to

unintended errors if changes in minor compiler versions affect the smart contract logic.

Recommendation

We recommended using version 0.8.27 as specified in the Hardhat settings and locking

the version by omitting the ^ .

Update

Fixed at 15865bdf3e778674be35e2a422c8e83656544efd

I-01 Solidity version can be specified as 0.8.27

Severity INFO

Status • FIXED

File Location Line

 - 2

 - 2

ClaimSoftCurrency.sol

RetroDropWithMerkle.sol

https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/ClaimSoftCurrency.sol#L2
https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/RetroDropWithMerkle.sol#L2
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd

FINDINgS REPORT 22

Location

Description

In the function claimPoints of the contract RetroDropWithMerkle , there is no record of

how many points users have claimed.

Recommendation

We recommended adding a mapping to store information about the number of points

each user has claimed and making it public so that it can always be checked on-chain.

Update

Fixed at 15865bdf3e778674be35e2a422c8e83656544efd

I-02 Missing record in RetroDropWithMerkle

Severity INFO

Status • FIXED

File Location Line

 contract RetroDropWithMerkle > function claimPoints 44RetroDropWithMerkle.sol

https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/RetroDropWithMerkle.sol#L44
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd

FINDINgS REPORT 23

Location

Description

In the mentioned locations, there is no separate function parameter that allows the sender

to make a claim on behalf of any address.

Recommendation

We recommend specifying a separate function parameter instead of relying solely on

msg.sender , for example, account . This will allow the sender to make a claim on behalf of

any address.

Update

Clash of Coins' Response

We do not see a product requirement to allow claiming from other addresses, so we

deliberately decided not to change this logic.

I-03

Specify the user instead of msg.sender as a separate

function parameter in RetroDropWithMerkle , ClaimS

oftCurrency

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract RetroDropWithMerkle > function claimPoints 45

 contract ClaimSoftCurrency > function claimPoints 52

RetroDropWithMerkle.sol

ClaimSoftCurrency.sol

https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/RetroDropWithMerkle.sol#L45
https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/ClaimSoftCurrency.sol#L52

FINDINgS REPORT 24

Location

Description

In the function _verifySignature of the contract ClaimSoftCurrency , the error message

is not entirely correct, as the recover function already includes a similar message:

require(_verifySignature(messageHash, signature), "Invalid signature");

Moreover, this message is not appropriate for the logic of this contract. In this contract, it

actually signifies an invalid signer.

Recommendation

We recommended using the "Invalid signer" revert message instead of "Invalid signature."

Update

Fixed at 15865bdf3e778674be35e2a422c8e83656544efd

I-04 Incorrect error message in ClaimSoftCurrency

Severity INFO

Status • FIXED

File Location Line

 contract ClaimSoftCurrency > function _verifySignature 55ClaimSoftCurrency.sol

https://github.com/onewayblock/coc-claim-contracts/tree/63918d3513f13a6311cf3519b1b59c03682a0c1d/contracts/ClaimSoftCurrency.sol#L55
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v5.1/contracts/utils/cryptography/ECDSA.sol#L169
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd

FINDINgS REPORT 25

Description

Using require is considered an outdated method. To make the code more readable,

provide clearer error messages, and improve debugging, it is recommended to use custom

errors.

Note that the OpenZeppelin library already uses custom errors for this purpose.

Recommendation

We recommended replacing require statements with custom errors to enhance code

clarity and maintainability.

Update

Fixed at 15865bdf3e778674be35e2a422c8e83656544efd

I-05 Replace require with custom errors

Severity INFO

Status • FIXED

https://soliditylang.org/blog/2021/04/21/custom-errors/
https://soliditylang.org/blog/2021/04/21/custom-errors/
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd

FINDINgS REPORT 26

Description

We identified the following inaccuracies in the README file:

Currently, there is no information on how to run tests and what dependencies are

required. For example, I had to install the TypeScript dependency separately, and I

selected the Node.js version according to the Hardhat version. Such details should be

specified in the package.json , and a test command should be added to execute the

tests. Basic environment information is necessary, especially if the repository is

public.

Information about Retrodrom is superfluous, as there is no such contract in the

repository.

The function signature

claimPoints(uint256 points, uint256 nonce, uint256 chainId, bytes memory signature)

should be changed to claimPoints(uint256 points, bytes memory signature) .

Add descriptions for errors.

Provide advanced information in deployment scripts for Hardhat ignition parameters

(./ignition/parameters.json) and include a sample file:

ClaimRewardsModule : owner , backendSigner

RetroDropWithMerkleModule : owner , merkleRoot

Specify the Node.js version required to run tests and deployment.

Remove redundant networks (ethereum-mainnet and ethereum-sepolia).

Recommendation

We recommended addressing the inaccuracies listed above to improve the completeness

and clarity of the README file.

Update

Fixed at 15865bdf3e778674be35e2a422c8e83656544efd and

0c8f42e93d6f7a6a6fdd84252c109150d3371ba4

I-06 Incomplete description in the README file

Severity INFO

Status • FIXED

1.

2.

3.

4.

5.

6.

7.

8.

9.

https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/15865bdf3e778674be35e2a422c8e83656544efd
https://github.com/onewayblock/coc-claim-contracts/commit/0c8f42e93d6f7a6a6fdd84252c109150d3371ba4
https://github.com/onewayblock/coc-claim-contracts/commit/0c8f42e93d6f7a6a6fdd84252c109150d3371ba4

FINDINgS REPORT 27

Location

Description

In the contract ClaimSoftCurrency , the error TransactionAlreadyExecuted is redundant

and can be removed.

Recommendation

We recommended removing the redundant TransactionAlreadyExecuted error.

Update

Fixed at 0c8f42e93d6f7a6a6fdd84252c109150d3371ba4

I-07 Redundant error in ClaimSoftCurrency

Severity INFO

Status • FIXED

File Location Line

 contract ClaimSoftCurrency 27ClaimSoftCurrency.sol

https://github.com/onewayblock/coc-claim-contracts/tree/15865bdf3e778674be35e2a422c8e83656544efd/contracts/ClaimSoftCurrency.sol#L27
https://github.com/onewayblock/coc-claim-contracts/commit/0c8f42e93d6f7a6a6fdd84252c109150d3371ba4
https://github.com/onewayblock/coc-claim-contracts/commit/0c8f42e93d6f7a6a6fdd84252c109150d3371ba4

FINDINgS REPORT 28

Location

Description

In the contract RetroDropWithMerkle , there is a claimedPoints storage variable.

However, the name pointClaimed would be more appropriate, as it aligns with naming

conventions used in other contracts and the event PointClaimed .

Recommendation

We recommend renaming the claimedPoints storage variable to pointClaimed .

Update

Clash of Coins' Response

We agree with the comment regarding naming; however, we do not plan to fix it as the

contract is already released.

I-08
Rename claimedPoints to pointClaimed in RetroD

ropWithMerkle

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract RetroDropWithMerkle 16RetroDropWithMerkle.sol

https://github.com/onewayblock/coc-claim-contracts/tree/15865bdf3e778674be35e2a422c8e83656544efd/contracts/RetroDropWithMerkle.sol#L16

FINDINgS REPORT 29

Location

Description

In the mentioned locations, there is no documentation explaining the errors and the

scenarios in which they occur:

//ClaimSoftCurrency

error InvalidSigner();

error InvalidSignerAddress();

//RetroDropWithMerkle

error PointsAlreadyClaimed();

error InvalidProof();

error InvalidPoints();

Recommendation

We recommended adding documentation describing these errors and the cases in which

they occur.

Update

Fixed at 0c8f42e93d6f7a6a6fdd84252c109150d3371ba4

I-09
Missing error descriptions in ClaimSoftCurrency ,

RetroDropWithMerkle

Severity INFO

Status • FIXED

File Location Line

 contract ClaimSoftCurrency 25

 contract RetroDropWithMerkle 18

ClaimSoftCurrency.sol

RetroDropWithMerkle.sol

https://github.com/onewayblock/coc-claim-contracts/tree/15865bdf3e778674be35e2a422c8e83656544efd/contracts/ClaimSoftCurrency.sol#L25
https://github.com/onewayblock/coc-claim-contracts/tree/15865bdf3e778674be35e2a422c8e83656544efd/contracts/RetroDropWithMerkle.sol#L18
https://github.com/onewayblock/coc-claim-contracts/commit/0c8f42e93d6f7a6a6fdd84252c109150d3371ba4
https://github.com/onewayblock/coc-claim-contracts/commit/0c8f42e93d6f7a6a6fdd84252c109150d3371ba4

FINDINgS REPORT 30

Location

Description

In the function claimRewards of the contract ClaimRewards , there are a few checks on

uint type variables:

 if (points <= 0) {

 revert InvalidPoints();

 }

 if (coins <= 0) {

 revert InvalidCoins();

 }

However, using the condition <= 0 is redundant for uint type variables, as they cannot be

less than zero.

Recommendation

We recommend replacing <= 0 with == 0 for uint type variables.

Update

Clash of Coins' Response

We agree but cannot make changes as the contract has already been deployed to

production.

I-10
Unnecessary <= 0 condition for uint in

ClaimRewards

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract ClaimRewards > function claimRewards 70

 contract ClaimRewards > function claimRewards 74

ClaimRewards.sol

ClaimRewards.sol

https://github.com/onewayblock/coc-claim-contracts/tree/a8facc20dc1097f27a2463ddf9e2e530f12ceb29/contracts/ClaimRewards.sol#L70
https://github.com/onewayblock/coc-claim-contracts/tree/a8facc20dc1097f27a2463ddf9e2e530f12ceb29/contracts/ClaimRewards.sol#L70

DEPLOY

VERIFICATION3

DEPLOY VERIFICATION 32

3.1 SCOPE

Deployment scripts:

ClaimRewards contract:

ClaimRewards.ts

RetroDropWithMerkle contract:

RetroDropWithMerkle.ts

Initialized roles:

ClaimRewards :

Current owner : 0x4897a4eE9D0d4078cd5c39980A7b970Df392F590

RetroDropWithMerkle :

Current owner : 0x4897a4eE9D0d4078cd5c39980A7b970Df392F590

Contract Network Address

RetroDropWithMerkle Base 0x6d19e9bc21a2120ff6fe71aad28ecd9d05ed6973

ClaimRewards Base 0x0fbBBd928EA4eDDd2EAfF51D4D412a3b65452F40

https://basescan.org/address/0x6d19e9bc21a2120ff6fe71aad28ecd9d05ed6973
https://basescan.org/address/0x0fbBBd928EA4eDDd2EAfF51D4D412a3b65452F40
https://github.com/onewayblock/coc-claim-contracts/blob/main/ignition/modules/ClaimRewards.ts
https://github.com/onewayblock/coc-claim-contracts/blob/main/ignition/modules/RetroDropWithMerkle.ts
https://basescan.org/address/0x4897a4eE9D0d4078cd5c39980A7b970Df392F590
https://basescan.org/address/0x4897a4eE9D0d4078cd5c39980A7b970Df392F590

DEPLOY VERIFICATION 33

3.2 CONCLUSION

The verification confirms the project’s security, with all checks receiving a "PASS" status. The

contracts comply with specified standards, align with the architecture, and integrate auditor

recommendations. Deployment scripts, bytecode, and initialization parameters are verified.

Access control is well-structured, and documentation is comprehensive.

DEPLOY VERIFICATION 34

3.3 VERIFICATION

3.3.1 Network specific behavior

Status: PASS

All the network features affecting the protocol's operation are being studied. The virtual

machine, the message transmission process within the main network, and vice versa (all

distinctive network features and how they can impact the protocol's operation) are being

researched.

Results

Both contracts comply with compiler version v0.8.27 and EVM version Paris .

3.3.2 Scope checking

Status: PASS

This stage involves auditors researching the provided scope for verification, studying project

dependencies, and building the protocol's architecture. Project documentation is examined.

Existing tests are also run at this stage, and the test coverage level is checked. Contract

mocks are investigated for logical errors. The protocol's architecture is examined for

conceptual errors.

Results

The declared scope fully covers all dependent contracts and libraries and corresponds to

the described architecture.

3.3.3 Audit report investigation

Status: PASS

At this stage, the presence of an audit report is verified, along with the alignment of the

scope in the report with the deployed scope. It is checked whether all critical vulnerabilities

have either been fixed or there is evidence that the vulnerability cannot be fixed without

posing a threat to the protocol. Recommendations and the conclusion in the report are

studied, as well as the alignment of the final commit with all the recommendations.

DEPLOY VERIFICATION 35

Results

The contract code matches the audited commit and incorporates all the auditors'

recommendations.

3.3.4 Deploy script check

Status: PASS

Auditors study the deployment script for contracts, examining initialization parameters. It is

verified that interrupting the protocol deployment will not lead to incorrect initialization (for

example, a front-run on initialization should result in both the script's reversion and require

re-deployment).

Results

In the deployment script ignition/modules/ClaimRewards.ts , the same owner address

is used to set two constructor parameters: backendSigner and owner . However, this is

not an issue, as the initialization parameters in the ignition/parameters folder are for

demonstration purposes only.

3.3.5 Deployment verification

Status: PASS

The bytecode of the deployed contracts is checked to match the final commit in the report.

An additional check is performed to verify all contracts on the explorer. Further verification

is conducted to confirm that the bytecode of deployed contracts cannot be altered.

Results

The bytecode of both compiled contracts matches the bytecode of the deployed

contracts (except for the IPFS link at the end of the runtime bytecode).

DEPLOY VERIFICATION 36

3.3.6 Initialization parameters check

Status: PASS

At this stage, values are gathered from the storage in verified contracts, and they are

checked for compliance with the parameters from the deployment script. Auditors ensure

that all contracts are initialized and cannot be reinitialized by malicious users.

Results

The initialization parameters align with the current storage values. It should be noted,

however, that the initialization parameters in the ignition/parameters folder are for

demonstration purposes only.

3.3.7 Role model verification

Status: PASS

The protocol's access control structure is examined to identify redundant roles or roles with

more privileges than intended. It is checked that all access rights are set by the previously

studied structure. If a role is assigned to a multisig, multisig owners are validated.

Results

The owner role for the ClaimRewards contract was initially set to

0x9A8E0702bC77CB0456A776634A265A3efb19d44F during initialization, and ownership

was subsequently transferred to the declared scope address

0x4897a4ee9d0d4078cd5c39980a7b970df392f590.

In the second contract, RetroDropWithMerkle , the owner address

0x4897a4ee9d0d4078cd5c39980a7b970df392f590 specified in the scope is initially set

during deployment.

3.3.8 Storage Check

Status: PASS

Contract storage check for the identification of potential vulnerabilities that could lead to

unauthorized access to data or its modification.

https://basescan.org/address/0x9A8E0702bC77CB0456A776634A265A3efb19d44F
https://basescan.org/address/0x4897a4ee9d0d4078cd5c39980a7b970df392f590
https://basescan.org/address/0x4897a4ee9d0d4078cd5c39980a7b970df392f590

DEPLOY VERIFICATION 37

Results

All contract storage values are explicitly set during initialization, through authorized

interactions with setters, or other contract functions.

3.3.9 Documentation Verification

Status: PASS

Document verification encompasses the analysis of functions and their passed values that

directly modify the contract storage.

Results

All functions and variables of both contracts are fully documented. The project also

includes a comprehensive README.md file detailing all functionality.

APPENDIX

4

APPENDIX 39

4.1 DISCLAIMER

At the request of client, Oxorio consents to the public release of this audit report. The

information contained in this audit report is provided "as is," without any representations or

warranties whatsoever. Oxorio disclaims any responsibility for damages that may arise from

or in relation to this audit report. Oxorio retains copyright of this report.

The audit makes no statements or warranties about the utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the platform or

its products, regulatory regime for the business model, or any other statements about the

fitness of the contracts to purpose, or their bug free status. The audit documentation is for

discussion purposes only.

APPENDIX 40

4.2 SECURITY ASSESSMENT

METHODOLOgY

Oxorio's smart contract audit methodology is designed to ensure the security, reliability,

and compliance of smart contracts throughout their development lifecycle. Our process

integrates the Smart Contract Security Verification Standard (SCSVS) with our advanced

techniques to address complex security challenges. For a detailed look at our approach,

please refer to the full version of our methodology. Here is a concise overview of our

auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 41

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 42

4.3 CODEBASE QUALITY

ASSESSMENT REFERENCE

The tables below describe the codebase quality assessment categories and rating criteria

used in this report.

Category Description

Access Control

Evaluates the effectiveness of mechanisms controlling access to ensure only

authorized entities can execute specific actions, critical for maintaining

system integrity and preventing unauthorized use.

Arithmetic

Focuses on the correct implementation of arithmetic operations to prevent

vulnerabilities like overflows and underflows, ensuring that mathematical

operations are both logically and semantically accurate.

Complexity

Assesses code organization and function clarity to confirm that functions and

modules are organized for ease of understanding and maintenance, thereby

reducing unnecessary complexity and enhancing readability.

Data Validation

Assesses the robustness of input validation to prevent common

vulnerabilities like overflow, invalid addresses, and other malicious input

exploits.

Decentralization

Reviews the implementation of decentralized governance structures to

mitigate insider threats and ensure effective risk management during

contract upgrades.

Documentation

Reviews the comprehensiveness and clarity of code documentation to

ensure that it provides adequate guidance for understanding, maintaining,

and securely operating the codebase.

External

Dependencies

Evaluates the extent to which the codebase depends on external protocols,

oracles, or services. It identifies risks posed by these dependencies, such as

compromised data integrity, cascading failures, or reliance on centralized

entities. The assessment checks if these external integrations have

appropriate fallback mechanisms or redundancy to mitigate risks and

protect the protocol’s functionality.

Error Handling
Reviews the methods used to handle exceptions and errors, ensuring that

failures are managed gracefully and securely.

Logging and

Monitoring

Evaluates the use of event auditing and logging to ensure effective tracking

of critical system interactions and detect potential anomalies.

Low-Level Calls

Reviews the use of low-level constructs like inline assembly, raw call or

delegatecall , ensuring they are justified, carefully implemented, and do

not compromise contract security.

APPENDIX 43

4.3.1 Rating Criteria

Category Description

Testing and

Verification

Reviews the implementation of unit tests and integration tests to verify that

codebase has comprehensive test coverage and reliable mechanisms to

catch potential issues.

Rating Description

Excellent The system is flawless and surpasses standard industry best practices.

Good
Only minor issues were detected; overall, the system adheres to established best

practices.

Fair Issues were identified that could potentially compromise system integrity.

Poor Numerous issues were identified that compromise system integrity.

Absent A critical component is absent, severely compromising system safety.

Not

Applicable
This category does not apply to the current evaluation.

APPENDIX 44

4.4 FINDINgS CLASSIFICATION

REFERENCE

4.4.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

4.4.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 45

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding and acknowledges the associated

risks. This finding may affect the overall security of the project; however,

based on the risk assessment, the team will decide whether to address it or

leave it unchanged.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 46

4.5 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

THANK YOU FOR CHOOSINg

	Clash of Coins Claim Smart Contracts Security Audit Report
	Audit Overview
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Codebase Quality Assessment
	Summary of findings
	Conclusion

	Findings Report
	CRITICAL
	MAJOR
	WARNING
	W-01 msg.sender address usage as owner in ClaimSoftCurrency, RetroDropWithMerkle
	Location
	Description
	Recommendation
	Update

	W-02 nonce can be reused with different points in ClaimSoftCurrency
	Location
	Description
	Recommendation
	Update

	W-03 Missing condition that points is not zero in RetroDropWithMerkle
	Location
	Description
	Recommendation
	Update

	W-04 Minting only points or only coins is not allowed in ClaimRewards
	Location
	Description
	Recommendation
	Update
	Clash of Coins' Response

	INFO
	I-01 Solidity version can be specified as 0.8.27
	Location
	Description
	Recommendation
	Update

	I-02 Missing record in RetroDropWithMerkle
	Location
	Description
	Recommendation
	Update

	I-03 Specify the user instead of msg.sender as a separate function parameter in RetroDropWithMerkle, ClaimSoftCurrency
	Location
	Description
	Recommendation
	Update
	Clash of Coins' Response

	I-04 Incorrect error message in ClaimSoftCurrency
	Location
	Description
	Recommendation
	Update

	I-05 Replace require with custom errors
	Description
	Recommendation
	Update

	I-06 Incomplete description in the README file
	Description
	Recommendation
	Update

	I-07 Redundant error in ClaimSoftCurrency
	Location
	Description
	Recommendation
	Update

	I-08 Rename claimedPoints to pointClaimed in RetroDropWithMerkle
	Location
	Description
	Recommendation
	Update
	Clash of Coins' Response

	I-09 Missing error descriptions in ClaimSoftCurrency, RetroDropWithMerkle
	Location
	Description
	Recommendation
	Update

	I-10 Unnecessary <= 0 condition for uint in ClaimRewards
	Location
	Description
	Recommendation
	Update
	Clash of Coins' Response

	Deploy Verification
	Scope
	Conclusion
	Verification
	Network specific behavior
	Status: PASS
	Results

	Scope checking
	Status: PASS
	Results

	Audit report investigation
	Status: PASS
	Results

	Deploy script check
	Status: PASS
	Results

	Deployment verification
	Status: PASS
	Results

	Initialization parameters check
	Status: PASS
	Results

	Role model verification
	Status: PASS
	Results

	Storage Check
	Status: PASS
	Results

	Documentation Verification
	Status: PASS
	Results

	Appendix
	Disclaimer
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

