
MAY 9, 2025

ALTITUDE V2

SMART

CONTRACTS

SECURITY

AUDIT REPORT

EXECUTIVE

SUMMARY1

EXECUTIVE SUMMARY 3

1.1 EXECUTIVE SUMMARY

This document presents the smart contracts security audit conducted by Oxorio for Altitude

V2 Smart Contracts.

DeFi loans are typically over-collateralized and capital-inefficient, Altitude is a non-custodial

protocol that optimizes DeFi loans.

Altitude actively manages users’ debt and collateral in real-time, optimizing capital

efficiency.

The Altitude protocol is a set of smart contracts that allows users to take over-collateralized

loans from individual vaults, where a vault represents a supply-borrow currency pair (e.g.,

ETH-USDC). The Altitude Protocol both finds the best possible interest rates for users and

activates dormant collateral by deploying a portion of this to generate yield.

The audit process involved a comprehensive approach, including manual code review,

automated analysis, and extensive testing and simulations of the smart contracts to assess

the project’s security and functionality. The audit covered a total of 143 smart contracts,

encompassing 8570 lines of code. The codebase was thoroughly examined, with the audit

team collaborating closely with Altitude Labs and referencing the provided documentation

to address any questions regarding the expected behavior. For an in-depth explanation of

used smart contract security audit methodology, please refer to the Security Assessment

Methodology section of this document.

Throughout the audit, a collaborative approach was maintained with Altitude Labs to

address all concerns identified within the audit’s scope. Each issue has been either resolved

or formally acknowledged by Altitude Labs, contributing to the robustness of the project.

As a result, following a comprehensive review, our auditors have verified that the Altitude V2

Smart Contracts, as of audited commit 6ab784e78d21431e89853339eaa4da402dadf0e7 |,

has met the security and functionality requirements established for this audit, based on the

code and documentation provided, and operates as intended within the defined scope.

https://docs.altitude.fi
https://github.com/altitude-fi/altitude-v2/blob/6ab784e78d21431e89853339eaa4da402dadf0e7
https://github.com/altitude-fi/altitude-v2/blob/6ab784e78d21431e89853339eaa4da402dadf0e7

EXECUTIVE SUMMARY 4

1.2 SUMMARY Of fINDINgS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Detailed technical information on the audit findings, along with our recommendations for

addressing them, is provided in the Findings Report section for further reference.

All identified issues have been addressed, with Altitude Labs fixing them or formally

acknowledging their status.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 0 0 0 0 0

MAJOR 6 0 5 0 1

WARNING 9 0 5 3 1

INFO 12 0 7 4 1

TOTAL 27 0 17 7 3

AUDIT

OVERVIEW2

6

CONTENTS

1. EXECUTIVE SUMMARY ... 2

1.1. EXECUTIVE SUMMARY .. 3

1.2. SUMMARY OF FINDINGS .. 4

2. AUDIT OVERVIEW ... 5

2.1. DISCLAIMER ... 9

2.2. PROJECT BRIEF ... 10

2.3. PROJECT TIMELINE .. 11

2.4. AUDITED FILES ... 12

2.5. PROJECT OVERVIEW .. 17

2.6. CODEBASE QUALITY ASSESSMENT ... 18

2.7. FINDINGS BREAKDOWN BY FILE ... 20

2.8. CONCLUSION .. 21

3. FINDINGS REPORT ... 22

3.1. CRITICAL ... 23

3.2. MAJOR .. 24

M-01 Repeated calls draining all funds from strategies in FarmBufferDispatcher 24

M-02 Deposits allowed in strategies with inEmergency mode in FarmDispatcher 26

M-03 Incomplete withdrawals in the withdraw function in FarmDispatcher 28

M-04 Using uint256.max for full balance withdrawals may cause overflows in FarmDispatcher ... 30

M-05 Inability to commit earnings due to rounding errors When calculating uncommittedLossPerc

in HarvestableManager ... 32

M-06 No supply tokens minted for portion of withdrawFee after deduction in VaultCoreV1 34

3.3. WARNING ... 36

W-01 Farm loss at the moment of snapshot SupplyLoss is distributed proportionally to users'

supply balance in CommitMath .. 36

7

W-02 Address validation confusion in _validateBorrow in VaultCoreV1 38

W-03 Inability to withdraw funds from a deactivated strategy in FarmDispatcher 40

W-04 Inaccurate strategy.totalDeposit calculation after withdrawal with losses in FarmDispatcher

.. 41

W-05 Inconsistent permissions for strategy functions in FarmStrategy 43

W-06 Ability to successfully complete repay with repayAmount = 0 in VaultCoreV1 44

W-07 Insufficient Parameter Validation in FarmDispatcher, MorphoVault, SkimStrategy,

StrategyGenericPool, StrategyPendleBase .. 45

W-08 A portion of user funds may remain in the buffer, which can impact farmLoss in the case of a

SupplyLoss in FarmBufferDispatcher .. 47

W-09 Missing Check for actual withdrawal amount from strategy in FarmDispatcher 50

3.4. INFO .. 51

I-01 Non-optimal gas usage in LiquidatableManager ... 51

I-02 Missing validation that amountToTransfer is not less than amount in LenderStrategy 53

I-03 Setter required or make slippage immutable in StrategyPendleBase 54

I-04 Missing validation for decrease != 0 in FarmBuffer .. 55

I-05 Unable to withdraw mistakenly sent tokens in FarmBuffer .. 56

I-06 Typo in FarmBufferDispatcher ... 57

I-07 Incorrect approval in FarmBufferDispatcher ... 58

I-08 Approval remains active if deposit fails in FarmDispatcher .. 59

I-09 It is possible to pass strategyAddress == 0 in FarmDispatcher ... 60

I-10 No Setter for nonSkimAssets in SkimStrategy ... 61

I-11 Typo in toWithdaw in SupplyLossManager ... 62

I-12 farmDispatcher should be used instead of rewardsRecipient in FarmStrategy 63

4. APPENDIX ... 64

4.1. SECURITY ASSESSMENT METHODOLOGY .. 65

4.2. CODEBASE QUALITY ASSESSMENT REFERENCE .. 67

Rating Criteria ... 68

4.3. FINDINGS CLASSIFICATION REFERENCE ... 69

Severity Level Reference .. 69

8

Status Level Reference ... 69

4.4. ABOUT OXORIO ... 71

AUDIT OVERVIEW 9

2.1 DISCLAIMER

At the request of the client, Oxorio consents to the public release of this audit report. The

information contained herein is provided "as is" without any representations or warranties

of any kind. Oxorio disclaims all liability for any damages arising from or related to the use

of this audit report. Oxorio retains copyright over the contents of this report.

This report is based on the scope of materials and documentation provided to Oxorio for

the security audit as detailed in the Executive Summary and Audited Files sections. The

findings presented in this report may not encompass all potential vulnerabilities. Oxorio

delivers this report and its findings on an as-is basis, and any reliance on this report is

undertaken at the user’s sole risk. It is important to recognize that blockchain technology

remains in a developmental stage and is subject to inherent risks and flaws.

This audit does not extend beyond the programming language of smart contracts to include

areas such as the compiler layer or other components that may introduce security risks.

Consequently, this report should not be interpreted as an endorsement of any project or

team, nor does it guarantee the security of the project under review.

THE CONTENT OF THIS REPORT, INCLUDING ITS ACCESS AND/OR USE, AS WELL AS ANY

ASSOCIATED SERVICES OR MATERIALS, MUST NOT BE CONSIDERED OR RELIED UPON AS

FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER PROFESSIONAL ADVICE.

Third parties should not rely on this report for making any decisions, including the purchase

or sale of any product, service, or asset. Oxorio expressly disclaims any liability related to

the report, its contents, and any associated services, including, but not limited to, implied

warranties of merchantability, fitness for a particular purpose, and non-infringement.

Oxorio does not warrant, endorse, or take responsibility for any product or service

referenced or linked within this report.

For any decisions related to financial, legal, regulatory, or other professional advice, users

are strongly encouraged to consult with qualified professionals.

AUDIT OVERVIEW 10

2.2 PROjECT BRIEf

Title Description

Client Altitude Labs

Project name Altitude

Category Lending, Asset Management

Website altitude.fi

Repository github.com/altitude-fi/altitude-v2

Documentation docs.altitude.fi

Initial Commit c6aa8aa17293c430c55d508517bfe9e675d0e54b

Final Commit 6ab784e78d21431e89853339eaa4da402dadf0e7

Platform L1

Network Ethereum

Languages Solidity

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project Manager Elena Kozmiryuk - elena@oxor.io

https://www.altitude.fi/
https://github.com/altitude-fi/altitude-v2
https://docs.altitude.fi
https://github.com/altitude-fi/altitude-v2/tree/c6aa8aa17293c430c55d508517bfe9e675d0e54b/
https://github.com/altitude-fi/altitude-v2/tree/c6aa8aa17293c430c55d508517bfe9e675d0e54b/
https://github.com/altitude-fi/altitude-v2/blob/6ab784e78d21431e89853339eaa4da402dadf0e7
https://github.com/altitude-fi/altitude-v2/blob/6ab784e78d21431e89853339eaa4da402dadf0e7
mailto:am@oxor.io
mailto:elena@oxor.io

AUDIT OVERVIEW 11

2.3 PROjECT TIMELINE

The key events and milestones of the project are outlined below.

Date Event

March 25, 2025 Client approached Oxorio requesting an audit.

March 27, 2025 The audit team commenced work on the project.

April 7, 2025 Submission of the preliminary report #1.

April 14, 2025 Submission of the comprehensive report.

May 7, 2025 Client feedback on the report was received.

May 9, 2025 Submission of the final report incorporating client’s verified fixes.

AUDIT OVERVIEW 12

2.4 AUDITED fILES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

File Lines Blanks Comments Code Complexity

1 contracts/access/Ingress.sol 343 56 65 222 21%

2 contracts/common/ProxyExtension.sol 30 4 8 18 11%

3 contracts/common/ProxyInitializable.sol 51 11 13 27 30%

4 contracts/common/Roles.sol 14 2 6 6 0%

5 contracts/interfaces/external/IStETH.sol 8 2 1 5 0%

6 contracts/interfaces/external/IWStETH.sol 16 6 1 9 0%

7 contracts/interfaces/external/strategy/farming/Convex/IConvex.sol 39 14 1 24 0%

8
contracts/interfaces/external/strategy/farming/Convex/

ICVXRewards.sol
40 18 1 21 0%

9 contracts/interfaces/external/strategy/farming/Curve/I3PoolZap.sol 31 5 1 25 0%

10 contracts/interfaces/external/strategy/farming/Curve/ICurve.sol 20 8 1 11 0%

11 contracts/interfaces/external/strategy/farming/Curve/ICurve2.sol 18 7 1 10 0%

12 contracts/interfaces/external/strategy/farming/Curve/ICurve4.sol 17 6 1 10 0%

13 contracts/interfaces/external/strategy/farming/Curve/ICurveNG.sol 14 5 1 8 0%

14
contracts/interfaces/external/strategy/lending/Aave/

IAaveDebtToken.sol
48 14 1 33 0%

15 contracts/interfaces/external/strategy/lending/Aave/IAToken.sol 11 2 4 5 0%

16
contracts/interfaces/external/strategy/lending/Aave/

IBaseLendingPool.sol
65 10 4 51 0%

17
contracts/interfaces/external/strategy/lending/Aave/

IFlashLoanReceiver.sol
18 2 6 10 0%

17
contracts/interfaces/external/strategy/lending/Aave/

ILendingPoolAddressProvider.sol
16 3 8 5 0%

19
contracts/interfaces/external/strategy/lending/Aave/

IProtocolDataProvider.sol
71 7 1 63 0%

20 contracts/interfaces/external/strategy/lending/Aave/IWETH.sol 16 6 1 9 0%

21
contracts/interfaces/external/strategy/lending/Aave/

IWETHGateway.sol
12 4 1 7 0%

22
contracts/interfaces/external/strategy/lending/Aave/v2/

ILendingPool.sol
37 3 15 19 0%

23
contracts/interfaces/external/strategy/lending/Aave/v3/

ILendingPool.sol
76 4 36 36 0%

24
contracts/interfaces/external/strategy/lending/Aave/v3/

IPoolAddressesProvider.sol
223 30 155 38 0%

25
contracts/interfaces/external/strategy/lending/Aave/v3/

IPriceOracleGetter.sol
63 8 44 11 0%

26
contracts/interfaces/external/strategy/lending/Aave/v3/

IRewardsController.sol
148 14 91 43 0%

27
contracts/interfaces/external/strategy/lending/Aave/v3/

IRewardsDistributor.sol
166 16 109 41 0%

https://github.com/boyter/scc
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/access/Ingress.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/common/ProxyExtension.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/common/ProxyInitializable.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/common/Roles.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/IStETH.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/IWStETH.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/farming/Convex/IConvex.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/farming/Convex/ICVXRewards.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/farming/Convex/ICVXRewards.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/farming/Curve/I3PoolZap.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/farming/Curve/ICurve.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/farming/Curve/ICurve2.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/farming/Curve/ICurve4.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/farming/Curve/ICurveNG.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IAaveDebtToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IAaveDebtToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IAToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IBaseLendingPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IBaseLendingPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IFlashLoanReceiver.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IFlashLoanReceiver.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/ILendingPoolAddressProvider.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/ILendingPoolAddressProvider.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IProtocolDataProvider.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IProtocolDataProvider.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IWETH.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IWETHGateway.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/IWETHGateway.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v2/ILendingPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v2/ILendingPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/ILendingPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/ILendingPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/IPoolAddressesProvider.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/IPoolAddressesProvider.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/IPriceOracleGetter.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/IPriceOracleGetter.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/IRewardsController.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/IRewardsController.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/IRewardsDistributor.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/Aave/v3/IRewardsDistributor.sol

AUDIT OVERVIEW 13

File Lines Blanks Comments Code Complexity

28
contracts/interfaces/external/strategy/lending/migration/Aave/

IAaveMigration.sol
21 4 1 16 0%

29
contracts/interfaces/external/strategy/lending/migration/

Compound/ICompoundMigration.sol
20 3 1 16 0%

30
contracts/interfaces/external/strategy/lending/migration/

Compound/ICompoundV2Migration.sol
12 3 2 7 0%

31
contracts/interfaces/external/strategy/lending/migration/

ILendingProtocolMigration.sol
64 9 12 43 0%

32 contracts/interfaces/external/strategy/swap/ICurveRouter.sol 27 3 1 23 0%

33 contracts/interfaces/external/strategy/swap/IQuoter.sol 153 10 61 82 0%

34
contracts/interfaces/external/strategy/swap/

IUniswapV2Router02.sol
11 1 1 9 0%

35 contracts/interfaces/internal/access/IIngress.sol 82 26 7 49 0%

36 contracts/interfaces/internal/flashloan/IFlashLoanStrategy.sol 16 4 5 7 0%

37 contracts/interfaces/internal/misc/IBorrowVerifier.sol 22 4 5 13 0%

38
contracts/interfaces/internal/misc/incentives/rebalance/

IRebalanceIncentivesController.sol
30 11 5 14 0%

39 contracts/interfaces/internal/oracles/IChainlinkPrice.sol 18 4 5 9 0%

40 contracts/interfaces/internal/oracles/IPriceSource.sol 14 3 6 5 0%

41
contracts/interfaces/internal/strategy/farming/

IConvexFarmStrategy.sol
78 25 5 48 0%

42 contracts/interfaces/internal/strategy/farming/IFarmBuffer.sol 30 11 4 15 0%

43
contracts/interfaces/internal/strategy/farming/

IFarmBufferDispatcher.sol
24 7 4 13 0%

44 contracts/interfaces/internal/strategy/farming/IFarmDispatcher.sol 74 23 1 50 0%

45
contracts/interfaces/internal/strategy/farming/

IFarmDropStrategy.sol
26 9 4 13 0%

46 contracts/interfaces/internal/strategy/farming/IFarmStrategy.sol 44 16 4 24 0%

47 contracts/interfaces/internal/strategy/farming/IMorphoVault.sol 19 6 4 9 0%

48
contracts/interfaces/internal/strategy/farming/

IPendleFarmStrategy.sol
49 18 4 27 0%

49 contracts/interfaces/internal/strategy/IFlashLoanCallback.sol 10 2 4 4 0%

50 contracts/interfaces/internal/strategy/ISkimStrategy.sol 15 4 5 6 0%

51 contracts/interfaces/internal/strategy/lending/IAaveStrategy.sol 25 7 5 13 0%

52 contracts/interfaces/internal/strategy/lending/ICompStrategy.sol 16 2 5 9 0%

53 contracts/interfaces/internal/strategy/lending/ILenderStrategy.sol 69 29 4 36 0%

54 contracts/interfaces/internal/strategy/lending/IMorphoStrategy.sol 16 4 6 6 0%

55 contracts/interfaces/internal/strategy/swap/ISwapStrategy.sol 70 16 4 50 0%

56
contracts/interfaces/internal/strategy/swap/

ISwapStrategyConfiguration.sol
14 5 1 8 0%

57 contracts/interfaces/internal/tokens/IDebtToken.sol 18 4 5 9 0%

58 contracts/interfaces/internal/tokens/IInterestToken.sol 66 24 5 37 0%

59 contracts/interfaces/internal/tokens/ISupplyToken.sol 19 5 5 9 0%

60 contracts/interfaces/internal/tokens/ITokensFactory.sol 41 12 4 25 0%

61
contracts/interfaces/internal/vault/extensions/configurable/

IConfigurableVault.sol
36 7 5 24 0%

62
contracts/interfaces/internal/vault/extensions/groomable/

IGroomableManager.sol
33 7 5 21 0%

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/migration/Aave/IAaveMigration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/migration/Aave/IAaveMigration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/migration/Compound/ICompoundMigration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/migration/Compound/ICompoundMigration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/migration/Compound/ICompoundV2Migration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/migration/Compound/ICompoundV2Migration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/migration/ILendingProtocolMigration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/lending/migration/ILendingProtocolMigration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/swap/ICurveRouter.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/swap/IQuoter.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/swap/IUniswapV2Router02.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/external/strategy/swap/IUniswapV2Router02.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/access/IIngress.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/flashloan/IFlashLoanStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/misc/IBorrowVerifier.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/misc/incentives/rebalance/IRebalanceIncentivesController.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/misc/incentives/rebalance/IRebalanceIncentivesController.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/oracles/IChainlinkPrice.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/oracles/IPriceSource.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IConvexFarmStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IConvexFarmStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IFarmBuffer.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IFarmBufferDispatcher.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IFarmBufferDispatcher.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IFarmDispatcher.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IFarmDropStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IFarmDropStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IFarmStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IMorphoVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IPendleFarmStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/farming/IPendleFarmStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/IFlashLoanCallback.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/ISkimStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/lending/IAaveStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/lending/ICompStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/lending/ILenderStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/lending/IMorphoStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/swap/ISwapStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/swap/ISwapStrategyConfiguration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/strategy/swap/ISwapStrategyConfiguration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/tokens/IDebtToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/tokens/IInterestToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/tokens/ISupplyToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/tokens/ITokensFactory.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/configurable/IConfigurableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/configurable/IConfigurableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/groomable/IGroomableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/groomable/IGroomableManager.sol

AUDIT OVERVIEW 14

File Lines Blanks Comments Code Complexity

63
contracts/interfaces/internal/vault/extensions/groomable/

IGroomableVault.sol
24 8 5 11 0%

64
contracts/interfaces/internal/vault/extensions/harvestable/

IHarvestableManager.sol
40 9 5 26 0%

65
contracts/interfaces/internal/vault/extensions/harvestable/

IHarvestableVault.sol
26 8 4 14 0%

66 contracts/interfaces/internal/vault/extensions/IVaultExtensions.sol 13 3 4 6 0%

67
contracts/interfaces/internal/vault/extensions/liquidatable/

ILiquidatableManager.sol
20 5 5 10 0%

68
contracts/interfaces/internal/vault/extensions/liquidatable/

ILiquidatableVault.sol
17 5 4 8 0%

69
contracts/interfaces/internal/vault/extensions/snapshotable/

ISnapshotableManager.sol
29 7 4 18 0%

70
contracts/interfaces/internal/vault/extensions/snapshotable/

ISnapshotableVault.sol
26 7 4 15 0%

71
contracts/interfaces/internal/vault/extensions/supply-loss/

ISupplyLossManager.sol
18 6 4 8 0%

72
contracts/interfaces/internal/vault/extensions/supply-loss/

ISupplyLossVault.sol
13 3 4 6 0%

73 contracts/interfaces/internal/vault/IInterestVault.sol 12 3 4 5 0%

74 contracts/interfaces/internal/vault/IVaultCore.sol 71 15 5 51 0%

75 contracts/interfaces/internal/vault/IVaultCoreV1Initializer.sol 32 9 8 15 0%

76 contracts/interfaces/internal/vault/IVaultRegistry.sol 162 36 5 121 0%

77 contracts/interfaces/internal/vault/IVaultStorage.sol 57 24 5 28 0%

78 contracts/libraries/types/CommonTypes.sol 32 4 9 19 0%

79 contracts/libraries/types/HarvestTypes.sol 56 6 10 40 0%

80 contracts/libraries/types/SupplyLossTypes.sol 26 3 8 15 0%

81 contracts/libraries/types/VaultTypes.sol 78 10 15 53 0%

82 contracts/libraries/uniswap-v3/FullMath.sol 120 10 51 59 20%

83 contracts/libraries/uniswap-v3/OracleLibrary.sol 70 10 17 43 14%

84 contracts/libraries/uniswap-v3/PoolAddress.sol 47 4 12 31 3%

85 contracts/libraries/uniswap-v3/TickMath.sol 216 16 22 178 39%

86 contracts/libraries/uniswap-v3/TransferHelper.sol 66 9 13 44 18%

87 contracts/libraries/utils/CommitMath.sol 365 46 121 198 14%

88 contracts/libraries/utils/FlashLoan.sol 22 2 11 9 0%

89 contracts/libraries/utils/HealthFactorCalculator.sol 88 9 30 49 6%

90 contracts/libraries/utils/Utils.sol 70 6 20 44 27%

91 contracts/misc/BorrowVerifier.sol 59 8 12 39 8%

92
contracts/misc/incentives/rebalance/

RebalanceIncentivesController.sol
121 22 29 70 9%

93 contracts/oracles/ChainlinkPrice.sol 169 28 48 93 19%

94 contracts/oracles/UniswapV3Twap.sol 152 24 39 89 19%

95 contracts/strategies/farming/FarmBuffer.sol 102 20 22 60 10%

96 contracts/strategies/farming/FarmBufferDispatcher.sol 101 19 22 60 10%

97 contracts/strategies/farming/FarmDispatcher.sol 404 69 85 250 19%

98
contracts/strategies/farming/strategies/convex/

StrategyGenericPool.sol
299 44 74 181 23%

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/groomable/IGroomableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/groomable/IGroomableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/harvestable/IHarvestableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/harvestable/IHarvestableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/harvestable/IHarvestableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/harvestable/IHarvestableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/IVaultExtensions.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/liquidatable/ILiquidatableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/liquidatable/ILiquidatableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/liquidatable/ILiquidatableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/liquidatable/ILiquidatableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/snapshotable/ISnapshotableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/snapshotable/ISnapshotableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/snapshotable/ISnapshotableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/snapshotable/ISnapshotableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/supply-loss/ISupplyLossManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/supply-loss/ISupplyLossManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/supply-loss/ISupplyLossVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/extensions/supply-loss/ISupplyLossVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/IInterestVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/IVaultCore.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/IVaultCoreV1Initializer.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/IVaultRegistry.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/interfaces/internal/vault/IVaultStorage.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/types/CommonTypes.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/types/HarvestTypes.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/types/SupplyLossTypes.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/types/VaultTypes.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/uniswap-v3/FullMath.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/uniswap-v3/OracleLibrary.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/uniswap-v3/PoolAddress.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/uniswap-v3/TickMath.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/uniswap-v3/TransferHelper.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/utils/CommitMath.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/utils/FlashLoan.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/utils/HealthFactorCalculator.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/utils/Utils.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/misc/BorrowVerifier.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/misc/incentives/rebalance/RebalanceIncentivesController.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/misc/incentives/rebalance/RebalanceIncentivesController.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/oracles/ChainlinkPrice.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/oracles/UniswapV3Twap.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBuffer.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBufferDispatcher.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyGenericPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyGenericPool.sol

AUDIT OVERVIEW 15

File Lines Blanks Comments Code Complexity

99
contracts/strategies/farming/strategies/convex/

StrategyMeta3Pool.sol
55 9 15 31 6%

100
contracts/strategies/farming/strategies/convex/

StrategyMetaPool.sol
54 8 15 31 6%

101
contracts/strategies/farming/strategies/convex/

StrategyStable2Pool.sol
54 8 15 31 6%

102
contracts/strategies/farming/strategies/convex/

StrategyStableNGPool.sol
56 9 15 32 6%

103 contracts/strategies/farming/strategies/FarmDropStrategy.sol 163 23 40 100 12%

104 contracts/strategies/farming/strategies/FarmStrategy.sol 191 35 45 111 13%

105 contracts/strategies/farming/strategies/morpho/MorphoVault.sol 131 21 27 83 17%

106
contracts/strategies/farming/strategies/pendle/

StrategyPendleBase.sol
179 24 26 129 9%

107
contracts/strategies/farming/strategies/pendle/

StrategyPendleLP.sol
198 24 26 148 11%

108
contracts/strategies/farming/strategies/pendle/

StrategyPendlePT.sol
157 18 19 120 11%

109 contracts/strategies/flashloan/Aavev2FlashLoanStrategy.sol 59 7 13 39 0%

110 contracts/strategies/flashloan/FlashLoanStrategy.sol 77 14 19 44 14%

111 contracts/strategies/flashloan/MorphoFlashLoanStrategy.sol 39 6 12 21 0%

112 contracts/strategies/lending/aave/v3/StrategyAaveV3.sol 194 27 47 120 3%

113 contracts/strategies/lending/LenderStrategy.sol 217 44 46 127 13%

114 contracts/strategies/lending/morpho/StrategyMorphoV1.sol 300 34 52 214 11%

115 contracts/strategies/SkimStrategy.sol 50 8 13 29 17%

116 contracts/strategies/swap/CurveV2Strategy.sol 314 34 69 211 15%

117 contracts/strategies/swap/SwapStrategy.sol 140 23 43 74 11%

118 contracts/strategies/swap/SwapStrategyConfiguration.sol 29 5 11 13 0%

119 contracts/strategies/swap/UniswapV3Strategy.sol 244 36 60 148 11%

120 contracts/tokens/DebtToken.sol 109 18 26 65 3%

121 contracts/tokens/InterestToken.sol 283 53 80 150 10%

122 contracts/tokens/SupplyToken.sol 152 22 40 90 4%

123 contracts/tokens/TokensFactory.sol 144 20 25 99 6%

124 contracts/vaults/v1/base/InterestVault.sol 19 4 1 14 7%

125 contracts/vaults/v1/base/JoiningBlockVault.sol 30 5 8 17 6%

126 contracts/vaults/v1/base/VaultStorage.sol 114 32 34 48 4%

127 contracts/vaults/v1/ERC20/VaultERC20.sol 26 4 11 11 0%

128 contracts/vaults/v1/ETH/VaultETH.sol 36 6 11 19 16%

129
contracts/vaults/v1/extensions/configurable/

ConfigurableManager.sol
111 12 30 69 16%

130 contracts/vaults/v1/extensions/configurable/ConfigurableVault.sol 78 7 11 60 0%

131 contracts/vaults/v1/extensions/groomable/GroomableManager.sol 215 38 39 138 21%

132 contracts/vaults/v1/extensions/groomable/GroomableVault.sol 71 10 17 44 2%

133
contracts/vaults/v1/extensions/liquidatable/

LiquidatableManager.sol
119 22 19 78 12%

134 contracts/vaults/v1/extensions/liquidatable/LiquidatableVault.sol 84 11 22 51 4%

135
contracts/vaults/v1/extensions/snapshotable/harvest/

HarvestableManager.sol
376 55 101 220 19%

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyMeta3Pool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyMeta3Pool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyMetaPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyMetaPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyStable2Pool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyStable2Pool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyStableNGPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyStableNGPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/FarmDropStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/FarmStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/morpho/MorphoVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleLP.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleLP.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendlePT.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendlePT.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/flashloan/Aavev2FlashLoanStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/flashloan/FlashLoanStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/flashloan/MorphoFlashLoanStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/lending/aave/v3/StrategyAaveV3.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/lending/LenderStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/lending/morpho/StrategyMorphoV1.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/SkimStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/swap/CurveV2Strategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/swap/SwapStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/swap/SwapStrategyConfiguration.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/swap/UniswapV3Strategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/tokens/DebtToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/tokens/InterestToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/tokens/SupplyToken.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/tokens/TokensFactory.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/base/InterestVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/base/JoiningBlockVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/base/VaultStorage.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/ERC20/VaultERC20.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/ETH/VaultETH.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/configurable/ConfigurableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/groomable/GroomableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/groomable/GroomableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/liquidatable/LiquidatableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol

AUDIT OVERVIEW 16

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that

estimates logical depth and decision points like loops and conditional branches) by the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

File Lines Blanks Comments Code Complexity

136
contracts/vaults/v1/extensions/snapshotable/harvest/

HarvestableVault.sol
134 19 33 82 7%

137
contracts/vaults/v1/extensions/snapshotable/

SnapshotableManager.sol
157 20 43 94 13%

138
contracts/vaults/v1/extensions/snapshotable/

SnapshotableVault.sol
136 17 34 85 5%

139
contracts/vaults/v1/extensions/snapshotable/supply-loss/

SupplyLossManager.sol
305 52 93 160 12%

140
contracts/vaults/v1/extensions/snapshotable/supply-loss/

SupplyLossVault.sol
32 6 11 15 0%

141 contracts/vaults/v1/VaultCore.sol 471 74 112 285 11%

142 contracts/vaults/v1/VaultInitializer.sol 121 17 29 75 11%

143 contracts/vaults/v1/VaultRegistry.sol 457 58 98 301 6%

Total 14001 2339 3092 8570 9%

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/SnapshotableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/SnapshotableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/SnapshotableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/SnapshotableVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/VaultCore.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/VaultInitializer.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/VaultRegistry.sol
https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 17

2.5 PROjECT OVERVIEW

The Altitude protocol is a set of smart contracts that allows users to take over-collateralized

loans from individual vaults, where a vault represents a supply-borrow currency pair (e.g.,

ETH-USDC). The Altitude Protocol both finds the best possible interest rates for users and

activates dormant collateral by deploying a portion of this to generate yield.

Each supply/borrow currency pair will be managed in a single vault, for example, an ETH-

USDC vault where a user can supply ETH and borrow USDC. These vaults will be created

based on user demand. Each vault will facilitate a few key functions including:

Vault Core: Main user interaction point with the contracts for user deposit, borrow,

repay, withdraw, etc.

Lender Strategy: Deploying user assets into the lenders where the best rates can be

achieved.

Farm Dispatcher: Deploying previously dormant capital (active capital) in one or more

farm strategy to earn interest on the user's behalf.

Rebalancing: Ensuring the vault position stays healthy by borrowing and repaying

lenders when needed.

Harvesting: Recognizing earnings from the Farm Optimizations and enabling

distribution to users.

Position Update: Updating user balances to recognize their latest position, including

earnings from the farm strategy.

Liquidations: Enabling user funds to be liquidated when the user's position becomes

unhealthy.

Tokenization: Tokenizing user supply and debt positions.

AUDIT OVERVIEW 18

2.6 CODEBASE QUALITY

ASSESSMENT

The Codebase Quality Assessment table offers a comprehensive assessment of various

code metrics, as evaluated by our team during the audit, to gauge the overall quality and

maturity of the project’s codebase. By evaluating factors such as complexity, documentation

and testing coverage to best practices, this table highlights areas where the project excels

and identifies potential improvement opportunities. Each metric receives an individual

rating, offering a clear snapshot of the project's current state, guiding prioritization for

refactoring efforts, and providing insights into its maintainability, security, and scalability.

For a detailed description of the categories and ratings, see the Codebase Quality

Assessment Reference section.

Category Assessment Result

Access Control

The project's codebase implements a robust access control

mechanism with multiple differentiated roles to manage

system functionalities efficiently. Additionally, it includes

validations to filter out prohibited addresses under

sanctions and permits authorized addresses.

Good

Arithmetic

The project diligently manages arithmetic operations to

ensure accuracy and security. However, specific concerns

outlined in M-07 , M-08 warrant further review to reinforce

the robustness of these operations.

Good

Complexity

The project benefits from a well-structured modular

architecture that enhances readability and maintainability.

However, the complexity introduced by the upgradeable

scheme using proxy extensions warrants careful

consideration.

Good

Data Validation

The project performs data validation across many

components, but a significant portion of the issues

highlighted in this report stem from insufficient validation

processes. It is crucial to enhance the validation mechanisms

to address these deficiencies and improve the overall

robustness of the system.

Fair

Decentralization

The project does not incorporate a decentralized approach

to management, and therefore, the metric is not applicable

in this context.

Not

Applicable

AUDIT OVERVIEW 19

Category Assessment Result

Documentation

The project's documentation effectively explains the complex

logic integral to the system. However, it lacks comprehensive

details on the architecture and the interactions among

contracts. This absence of a detailed architectural blueprint

could impede understanding of the overall system design

and operational coherence.

Good

External

Dependencies

The project effectively manages a significant number of

external dependencies, including integrations with

prominent projects such as Morpho , Convex , Curve , Aave

and Uniswap V3 . While some of these integrations were

outside the scope of this audit, those that were reviewed

exhibited robust implementation practices.

Excellent

Error Handling

The project demonstrates competent exception handling

throughout the codebase. However, it is important to

address the issues outlined in the report that highlight

potential error scenarios, including several instances where

necessary revert statements are missing.

Good

Logging and

Monitoring

The project exhibits excellent logging capabilities, recording

all important events within the system. This comprehensive

logging framework enables the effective use of third-party

monitoring services such as Tenderly or Forta , which

facilitate real-time data analysis and enhance the ability to

track system performance and security incidents accurately.

Excellent

Low-Level Calls

The project is free from low-level calls, ensuring a higher

level of security by avoiding potential pitfalls associated with

direct, low-level interactions with the blockchain.

Not

Applicable

Testing and

Verification

The codebase exhibits commendable test coverage,

demonstrating a strong commitment to verifying

functionality and reliability. However, there are notable gaps

in the test suite, particularly in key scenarios that remain

untested. Addressing these gaps by including these crucial

test cases will enhance the robustness of the testing

framework and ensure more comprehensive verification of

the system's behavior under various conditions.

Fair

AUDIT OVERVIEW 20

2.7 fINDINgS BREAkDOWN BY

fILE

This table provides an overview of the findings across the audited files, categorized by

severity level. It serves as a useful tool for identifying areas that may require attention,

helping to prioritize remediation efforts, and provides a clear summary of the audit results.

File TOTAL CRITICAL MAJOR WARNING INFO

contracts/strategies/farming/FarmDispatcher.sol 9 0 3 4 2

contracts/strategies/farming/FarmBufferDispatcher.sol 4 0 1 1 2

contracts/vaults/v1/VaultCore.sol 3 0 1 2 0

contracts/strategies/SkimStrategy.sol 2 0 0 1 1

contracts/strategies/farming/FarmBuffer.sol 2 0 0 0 2

contracts/strategies/farming/strategies/FarmStrategy.sol 2 0 0 1 1

contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol 2 0 0 1 1

contracts/libraries/utils/CommitMath.sol 1 0 0 1 0

contracts/strategies/farming/strategies/convex/StrategyGenericPool.sol 1 0 0 1 0

contracts/strategies/farming/strategies/morpho/MorphoVault.sol 1 0 0 1 0

contracts/strategies/lending/LenderStrategy.sol 1 0 0 0 1

contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol 1 0 0 0 1

contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol 1 0 1 0 0

contracts/vaults/v1/extensions/snapshotable/supply-loss/

SupplyLossManager.sol
1 0 0 0 1

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBufferDispatcher.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/VaultCore.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/SkimStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBuffer.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/FarmStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/utils/CommitMath.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyGenericPool.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/morpho/MorphoVault.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/lending/LenderStrategy.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossManager.sol
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossManager.sol

AUDIT OVERVIEW 21

2.8 CONCLUSION

A comprehensive audit was conducted on 143 smart contracts, revealing 0 critical and 6

major issues, along with numerous warnings and informational notes. The audit highlighted

several areas requiring improvement, such as logical discrepancies in the fund withdrawal

mechanisms, risks related to inaccurate cumulative withdrawal calculations, a lack of

sufficient condition checks for edge cases, and inadequate documentation that hampers

understanding of critical processes. These issues emphasize the importance of addressing

both functional flaws and security vulnerabilities.

The proposed changes are aimed at improving the overall fairness, efficiency, and security

of the system. Enhancing the loss distribution logic is intended to ensure equitable

treatment between users with different actions, such as borrowers and non-borrowers, by

preventing any undue disadvantage to one group over the other. Revising the buffer

management process seeks to prioritize user withdrawals over buffer replenishment,

ensuring that users' immediate needs are met before focusing on system reserves.

Maintaining consistency in roles and permissions across strategies will help streamline

operations and prevent potential misuse or unauthorized access.

Furthermore, robust parameter validation, including checks for strategies in "emergency

mode" and ensuring that critical addresses are not set to zero, is essential for safeguarding

against fund mismanagement or operational errors. Addressing issues such as rounding

errors in loss calculations, optimizing the deactivation and withdrawal processes for

strategies, and resolving potential inefficiencies—such as over-approvals or inadequate

withdrawal mechanisms—will enhance the overall resiliency and reliability of the system.

Following our initial audit, Altitude Labs worked closely with our team to address the

identified issues. Through multiple rounds of interaction, all identified issues have been

successfully addressed or formally acknowledged.

As a result, the project has passed our audit. Our auditors have verified that the Altitude V2,

as of audited commit 6ab784e78d21431e89853339eaa4da402dadf0e7 , operates as intended

within the defined scope, based on the information and code provided at the time of

evaluation. The robustness of the codebase has been significantly improved, meeting the

necessary security and functionality requirements established for this audit.

To enhance the project's security and readiness for production, we recommend conducting

additional security reviews after each significant contract change. Additionally, increasing

test coverage is advised to ensure thorough validation and reliability of the codebase.

https://github.com/altitude-fi/altitude-v2/blob/6ab784e78d21431e89853339eaa4da402dadf0e7
https://github.com/altitude-fi/altitude-v2/blob/6ab784e78d21431e89853339eaa4da402dadf0e7

fINDINgS

REPORT3

fINDINgS REPORT 23

3.1 CRITICAL

No critical issues found.

fINDINgS REPORT 24

3.2 MAjOR

Location

Description

In the decreaseBufferCapacity function of the FarmBufferDispatcher contract, funds

are withdrawn from strategies to fill the buffer and subsequently emptied entirely, sending

all funds to the caller:

uint256 amountWithdrawn = super._withdraw(farmBuffer.capacityMissing());

_fillBuffer(amountWithdrawn);

uint256 capacity = farmBuffer.capacity();

farmBuffer.decreaseCapacity(msg.sender);

There is nothing preventing the caller from invoking this function repeatedly until all funds

from the strategies are depleted. If the Roles.BETA role or its equivalent in the

permissioning system is compromised, all user funds in strategies could be stolen.

Recommendation

We recommend limiting the maximum amount that can be withdrawn from the buffer per

call to decreaseBufferCapacity to prevent abuse and potential theft of user funds.

M-01
Repeated calls draining all funds from strategies in Far

mBufferDispatcher

Severity MAJOR

Status • NO ISSUE

File Location Line

 Contract FarmBufferDispatcher > Function decreaseBufferCapacit

y
82

FarmBufferDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBufferDispatcher.sol#L82

fINDINgS REPORT 25

Update

Client's response

User funds are not at risk as the buffer is pre-funded and the amount withdrawn is limited

to the buffer capacity.

fINDINgS REPORT 26

Location

Description

The _dispatch function of the FarmDispatcher contract performs deposits into strategies.

However, there are no restrictions preventing calls to the deposit function when the

strategy is in inEmergency mode (inEmergency=true).

In other words, after a strategy owner invokes the emergencyWithdraw function to pull all

available funds from the strategy, user funds can still be sent into the strategy.

Withdrawing funds from a strategy in inEmergency=true mode is not possible. In order to

withdraw, the inEmergency status must first be deactivated (inEmergency=false) via the

emergencyDeactivateStrategy function in the dispatcher. However, this function also

deactivates the strategy, making it unavailable for withdrawals via the dispatcher.

If users need to withdraw from such a strategy, the only option is to re-add the strategy to

the dispatcher’s active pool via the addStrategy function. However, this action may be

undesirable, given that there was a compelling reason to activate the emergency mode in

the first place, which generally indicates the strategy’s unreliability.

Recommendation

We recommend prohibiting deposits into strategies that are in inEmergency mode.

Update

Fixed at 6430b1bcf44fa9eb679632e9be90a81a76691b9c

M-02
Deposits allowed in strategies with inEmergency

mode in FarmDispatcher

Severity MAJOR

Status • FIXED

File Location Line

 Contract FarmDispatcher > Function _dispatch 245FarmDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L245
https://github.com/altitude-fi/altitude-v2/blob/6430b1bcf44fa9eb679632e9be90a81a76691b9c
https://github.com/altitude-fi/altitude-v2/blob/6430b1bcf44fa9eb679632e9be90a81a76691b9c

fINDINgS REPORT 27

Client's response

To simplify we have removed the inEmergency state and separated management:

dispatcher: controls if funds should/shouldn’t be deposited into the strategy (activating,

deactivating, adjust cap, etc.)

strategy: controls any recovery of funds in case of an emergency

fINDINgS REPORT 28

Location

Description

In the _withdraw function of the FarmDispatcher contract, funds are withdrawn

sequentially from strategies in a loop. If the full requested withdrawal amount cannot be

fulfilled by one strategy, the remaining amount is withdrawn from subsequent strategies.

The variable toWithdraw is reduced by the amount withdrawn in each iteration.

However, instead of comparing the remaining amount (toWithdraw) against the amount

withdrawn in the current iteration (strategyWithdrawn), it is compared against the total

amount withdrawn so far (withdrawn):

try IFarmStrategy(strategyAddr).withdraw(toWithdraw) returns (uint256 strategyWithdrawn) {

 withdrawn += strategyWithdrawn;

 // Decrease totalDeposit to release capacity

 // ...

 // Remainder to withdraw in the next iteration

 if (toWithdraw < withdrawn) {

 toWithdraw = 0;

 } else {

 toWithdraw = requested - withdrawn;

 }

This causes the loop to terminate prematurely when the cumulative amount withdrawn

exceeds the remaining amount needed (toWithdraw < withdrawn). Consequently, the

required amount may not be fully withdrawn even though sufficient funds remain in the

strategies.

M-03
Incomplete withdrawals in the withdraw function in

FarmDispatcher

Severity MAJOR

Status • FIXED

File Location Line

 Contract FarmDispatcher > Function _withdraw 316FarmDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L316

fINDINgS REPORT 29

Recommendation

We recommend adjusting the logic so that toWithdraw comparisons are based on the

amount withdrawn in the current iteration rather than the cumulative withdrawn amount.

Update

Fixed at ba52aec6246be447f3474be5c7e0c9713ef99a1f

Client's response

Refactored logic and fixed incomplete withdrawals bug by compare to requested.

https://github.com/altitude-fi/altitude-v2/blob/ba52aec6246be447f3474be5c7e0c9713ef99a1f
https://github.com/altitude-fi/altitude-v2/blob/ba52aec6246be447f3474be5c7e0c9713ef99a1f

fINDINgS REPORT 30

Location

Description

In the setStrategyMax function of the FarmDispatcher contract, when newMax=0 , the

code assumes that all funds from a strategy should be withdrawn by setting the

withdrawAmount to type(uint256).max :

if (deposited > newMax) {

 uint256 withdrawAmount = type(uint256).max;

 if (newMax != 0) {

 withdrawAmount = deposited - newMax;

 }

 IFarmStrategy(strategyAddress).withdraw(withdrawAmount);

Not all strategies can handle such a large withdrawal value. For example, in the _withdraw

function of the StrategyPendleLP strategy, mathematical operations with the withdrawal

amount may lead to an overflow:

/// @param amountToWithdraw Amount of asset to withdraw

function _withdraw(uint256 amountToWithdraw) internal override {

 // ...

 // Determine LP needed by proportion

 amountToWithdraw = (lpBalance * (((amountToWithdraw * 1e18) / farmBalance) + 1)) / 1e18;

Recommendation

We recommend refactoring the logic to allow explicit handling of uint256.max as an

indication to withdraw all available funds.

M-04
Using uint256.max for full balance withdrawals may

cause overflows in FarmDispatcher

Severity MAJOR

Status • FIXED

File Location Line

 Contract FarmDispatcher > Function setStrategyMax 93FarmDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L93

fINDINgS REPORT 31

Update

Fixed at 5dff05cacd65f89f725e37b5ec38d19ae7ee9c32

Client's response

To raised issue is valid, but not quite as suggested. If the farm strategy has a different

farmAsset and uses Uniswap, the Quoter will revert without a reason for sums the pool

can't satisfy.

Limited withdraws to the amount available within FarmStrategy.withdraw()

https://github.com/altitude-fi/altitude-v2/blob/5dff05cacd65f89f725e37b5ec38d19ae7ee9c32
https://github.com/altitude-fi/altitude-v2/blob/5dff05cacd65f89f725e37b5ec38d19ae7ee9c32

fINDINgS REPORT 32

Location

Description

In the _repayLoan function of the HarvestableManager contract, an underflow error could

occur due to rounding during the calculation of farmLoss .

Consider a scenario where a farm loss is captured during the harvest process.

Assume that loss in the _splitFarmLoss function is greater than vaultBorrow but less

than harvestStorage.realUncommittedEarnings . In this case:

The percentage of loss relative to the total

harvestStorage.realUncommittedEarnings is calculated. This percentage is then

deducted from the uncommittedEarnings of each user when they call updatePosition .

The entire loss amount is immediately deducted from

harvestStorage.realUncommittedEarnings .

uncommittedLossPerc = (loss * 1e18) / harvestStorage.realUncommittedEarnings;

harvestStorage.realUncommittedEarnings -= loss;

return (vaultBorrows, uncommittedLossPerc, 0);

However, if harvestStorage.realUncommittedEarnings is large and loss is very small,

rounding during division may result in the uncommittedLossPerc being calculated as 0.

In such a case, users would not account for any loss in their uncommittedEarnings when

updating their positions, even though the loss has already been deducted by the protocol

from harvestStorage.realUncommittedEarnings .

M-05

Inability to commit earnings due to rounding errors

When calculating uncommittedLossPerc in

HarvestableManager

Severity MAJOR

Status • FIXED

File Location Line

 contract HarvestableManager > function _repayLoan 282HarvestableManager.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L282

fINDINgS REPORT 33

This may lead to a situation where the last users committing to this harvest snapshot would

not be allocated the correct amount of uncommittedEarnings , and the _repayLoan

function would encounter an underflow error:

uint256 realUncommittedEarnings = harvestStorage.realUncommittedEarnings;

// ...

realUncommittedEarnings -= commit.userHarvestUncommittedEarnings;

harvestStorage.realUncommittedEarnings = realUncommittedEarnings;

Recommendation

We recommend refactoring the logic to prevent scenarios where a loss deducted from the

general balance exceeds the amount deducted from users’ balances due to rounding.

Update

Fixed at 0c6ed94c27b57b88e7f71f8280461b7b1bcc276d ,

6ab784e78d21431e89853339eaa4da402dadf0e7

Client's response

Updated to prevent a possible underflow when updating realUncommittedEarnings

https://github.com/altitude-fi/altitude-v2/blob/0c6ed94c27b57b88e7f71f8280461b7b1bcc276d
https://github.com/altitude-fi/altitude-v2/blob/0c6ed94c27b57b88e7f71f8280461b7b1bcc276d
https://github.com/altitude-fi/altitude-v2/blob/6ab784e78d21431e89853339eaa4da402dadf0e7
https://github.com/altitude-fi/altitude-v2/blob/6ab784e78d21431e89853339eaa4da402dadf0e7

fINDINgS REPORT 34

Location

Description

In the _applyWithdrawal function of the VaultCoreV1 contract, the withdrawFee is

distributed among all users by increasing the index. Thus, all users share the fee.

The index increase is calculated using the ratio of supplyBalance - withdrawFee to

supplyBalance . This calculation considers the entire supplyBalance on the lender,

including the portion remaining for the user after the fee deduction.

// Manually apply the fee to be distributed among all the users by increasing the index

uint256 balanceNow = supplyToken.storedTotalSupply();

uint256 indexIncrease = supplyToken.calcIndex(balanceNow - withdrawFee);

supplyToken.setInterestIndex(indexIncrease);

However, the user’s index is updated immediately, meaning they do not participate in the

distribution of the withdrawFee . As a result, tokens for the user's share of the fee are not

minted, leaving a portion of the supply on the lender unallocated:

// Don't include user into the fee distribution

supplyToken.setBalance(account, maxWithdrawalAmount - (withdrawAmount + withdrawFee),

indexIncrease);

Recommendation

We recommend revisiting the logic for distributing withdrawFee to ensure that no

unaccounted supply balance remains in the system after deducting the user’s funds.

M-06
No supply tokens minted for portion of withdrawFee

after deduction in VaultCoreV1

Severity MAJOR

Status • FIXED

File Location Line

 contract VaultCoreV1 > function _applyWithdrawal 346VaultCore.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/VaultCore.sol#L346

fINDINgS REPORT 35

Update

Fixed at 5c74f71e3f7ddf4ad3bdfb1baf582b6102babcc8

Client's response

Resolved by distributed portion of withdrawFee allocated to withdrawing user to all other

users instead

https://github.com/altitude-fi/altitude-v2/blob/5c74f71e3f7ddf4ad3bdfb1baf582b6102babcc8
https://github.com/altitude-fi/altitude-v2/blob/5c74f71e3f7ddf4ad3bdfb1baf582b6102babcc8

fINDINgS REPORT 36

3.3 WARNINg

Location

Description

In the function _distributeWithdrawShortage of contract CommitMath , the user's share of

the total withdrawShortage calculated during snapshotSupplyLoss is determined. This

share is calculated for each user in proportion to their supplyBalance relative to the total

supplyBalanceAtSnapshot :

withdrawShortage = Utils.divRoundingUp(

 supplyBalance * snapshot.withdrawShortage,

 snapshot.supplyBalanceAtSnapshot

);

In fact, withdrawShortage represents the farm loss obtained during snapshotSupplyLoss

in the function _withdrawVaultBorrows :

// Consider the missing amount as a loss to allow for distribution amongst users

farmLoss = vaultBorrows - withdrawn;

Consider two users who deposited the same supply amount, but:

The first user took no debt.

The second user borrowed the maximum possible amount.

W-01

Farm loss at the moment of snapshot SupplyLoss is

distributed proportionally to users' supply balance in

CommitMath

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract CommitMath > function _distributeWithdrawShortage 328CommitMath.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/libraries/utils/CommitMath.sol#L328

fINDINgS REPORT 37

As a result, activeAsset will exist only for the first user, meaning only their available

capital can be used for farming.

At the same time, when updating positions during the calculation of the SupplyLoss

snapshot, both users will pay the same withdrawShortage .

Thus, in the event of farm profits, only the first user benefits, whereas in the case of farm

losses, both users share the losses equally.

Recommendation

we recommend revisiting this logic and implementing a fairer distribution of the loss.

Update

Client's response

This is the behaviour as designed but there is a workaround to avoid the described effect.

Running snapshotSupplyLoss is permissioned and can be preceded with a harvest when

needed. Running the harvest automatically however isn't desirable as it is only beneficial if

there is a farmLoss at the time of the supplyLoss and there aren't one or more large user

position(s) liquidatable.

fINDINgS REPORT 38

Location

Description

In the _borrow function of the VaultCoreV1 contract, the _validateBorrow function is

called for validation, where address verification is performed in ingressControl :

function _borrow(uint256 amount, address onBehalfOf, address receiver) internal {

 _validateBorrow(onBehalfOf, amount);

// ...

function _validateBorrow(address account, uint256 amount) internal {

 IIngress(ingressControl).validateBorrow(msg.sender, account, amount);

// ...

function validateBorrow(address borrower, address recipient, uint256 amount) external

override {

// ...

Within ingressControl , the validateBorrow function receives msg.sender as the

borrower and account (which maps to onBehalfOf) as the recipient .

This logic assumes that the onBehalfOf user, the one incurring the debt, is validated as the

recipient of the borrowed funds. However, the actual receiver specified in the _borrow

function is not validated.

Currently, functions such as borrow , depositAndBorrow , and borrowOnBehalfOf call

_borrow with receiver set to msg.sender . However, any future change in this behavior

W-02
Address validation confusion in _validateBorrow in V

aultCoreV1

Severity WARNING

Status • FIXED

File Location Line

 Contract VaultCoreV1 > Function _borrow 200VaultCore.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/VaultCore.sol#L200

fINDINgS REPORT 39

could lead to vulnerabilities due to the lack of validation for the receiver address in

ingressControl .

Recommendation

We recommend reviewing the logic and adding the receiver parameter where appropriate.

Update

Fixed at 209056935ccc8e30428931b919d86a2a2fea7b36

Client's response

Refactored validation logic and added receiver check in _validateBorrow .

https://github.com/altitude-fi/altitude-v2/blob/209056935ccc8e30428931b919d86a2a2fea7b36
https://github.com/altitude-fi/altitude-v2/blob/209056935ccc8e30428931b919d86a2a2fea7b36

fINDINgS REPORT 40

Location

Description

In the deactivateStrategy function of the FarmDispatcher contract, a strategy is

deactivated even if it still holds funds. However, funds can only be withdrawn from active

strategies.

As a result, reactivating the strategy becomes necessary in order to withdraw funds after it

has been deactivated.

Moreover, while funds can be withdrawn during deactivation using the

emergencyDeactivateStrategy function, this can only occur if the strategy is in

inEmergency mode.

Recommendation

We recommend adding logic to allow funds to be withdrawn during strategy deactivation.

While emergencyDeactivateStrategy provides a solution for withdrawing funds with

emergency status, adding functionality for regular deactivation would prevent the need to

reactivate strategies unnecessarily.

Update

Fixed at 78417ea2bffa0cc4cef1b6814423ce90ce39ae07

W-03
Inability to withdraw funds from a deactivated strategy

in FarmDispatcher

Severity WARNING

Status • FIXED

File Location Line

 Contract FarmDispatcher > Function deactivateStrategy 173FarmDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L173
https://github.com/altitude-fi/altitude-v2/blob/78417ea2bffa0cc4cef1b6814423ce90ce39ae07
https://github.com/altitude-fi/altitude-v2/blob/78417ea2bffa0cc4cef1b6814423ce90ce39ae07

fINDINgS REPORT 41

Location

Description

In the _withdraw function of the FarmDispatcher contract, withdrawals from strategies

are conducted in a loop. If losses occur within a strategy, the amount withdrawn might be

less than the requested toWithdraw .

Although the withdrawal amount is smaller due to losses, the full toWithdraw value is

subtracted from strategy.totalDeposit :

try IFarmStrategy(strategyAddr).withdraw(toWithdraw) returns (uint256 strategyWithdrawn) {

 // ...

 if (strategy.totalDeposit < toWithdraw) {

 availableLimit += strategy.totalDeposit;

 strategy.totalDeposit = 0;

 } else {

 availableLimit += toWithdraw;

 strategy.totalDeposit -= toWithdraw;

 }

For example, if strategy.totalDeposit > toWithdraw but the strategy incurs losses, all

funds may still be withdrawn. In such cases, the actual balance in the strategy would drop to

zero, yet strategy.totalDeposit and availableLimit may still indicate there are

remaining funds.

Recommendation

We recommend revising the balance calculation logic for strategy.totalDeposit .

Specifically, ensure that strategy.totalDeposit reflects the actual deposited balance

W-04
Inaccurate strategy.totalDeposit calculation after

withdrawal with losses in FarmDispatcher

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 Contract FarmDispatcher > Function _withdraw 307FarmDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L307

fINDINgS REPORT 42

rather than being arbitrarily updated during withdrawals. This approach has already been

implemented in the setStrategyMax function:

uint256 deposited = IFarmStrategy(strategyAddress).balance();

Update

Client's response

This is working as designed. strategy.totalDeposit() and strategy.balance() are intentionally

different to prevent costly dust transactions being made into one or more strategies.

fINDINgS REPORT 43

Location

Description

Different roles are used to manage the functions in the specified locations. For example, the

emergencyWithdraw function can only be executed by the owner, while the emergencySwap

function is executed by the dispatcher role.

This creates a situation where a dispatcher cannot call the emergencyDeactivateStrategy

function to deactivate the strategy and withdraw funds. To do so, the strategy must be set

to the inEmergency mode, which can only be activated by the strategy owner.

At the same time, only the dispatcher can exit the strategy from the inEmergency mode,

which the owner cannot influence.

Recommendation

We recommend considering the use of a unified role to manage the inEmergency mode to

avoid inconsistent permissions while working with the contract functions.

Update

Fixed at 6430b1bcf44fa9eb679632e9be90a81a76691b9c

Client's response

To simplify we have removed the inEmergency state and separated management:

dispatcher: controls if funds should/shouldn’t be deposited into the strategy (activating,

deactivating, adjust cap, etc.)

strategy: controls any recovery of funds in case of an emergency

W-05
Inconsistent permissions for strategy functions in Farm

Strategy

Severity WARNING

Status • FIXED

File Location Line

 contract FarmStrategy > function emergencyWithdraw 85

 contract FarmStrategy > function emergencySwap 96

FarmStrategy.sol

FarmStrategy.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/FarmStrategy.sol#L85
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/FarmStrategy.sol#L96
https://github.com/altitude-fi/altitude-v2/blob/6430b1bcf44fa9eb679632e9be90a81a76691b9c
https://github.com/altitude-fi/altitude-v2/blob/6430b1bcf44fa9eb679632e9be90a81a76691b9c

fINDINgS REPORT 44

Location

Description

In the _repay function of the VaultCoreV1 contract, it can be successfully called when the

balance of debtToken tokens is zero for the onBehalfOf user. In this case, the

_repayUnchecked function will return 0 , and the repay will complete successfully while

emitting a Repay event.

As a result, it is possible to spam monitoring and logging systems with Repay events while

only paying gas fees.

Recommendation

We recommend adding an error to prevent repayment of zero tokens.

Update

Fixed at b9ea6f0534394662a966c217141ad6692c9c17ff

Client's response

Prevents repayment of zero debt tokens

W-06
Ability to successfully complete repay with repayAmou

nt = 0 in VaultCoreV1

Severity WARNING

Status • FIXED

File Location Line

 contract VaultCoreV1 > function _repay 360VaultCore.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/VaultCore.sol#L360
https://github.com/altitude-fi/altitude-v2/blob/b9ea6f0534394662a966c217141ad6692c9c17ff
https://github.com/altitude-fi/altitude-v2/blob/b9ea6f0534394662a966c217141ad6692c9c17ff

fINDINgS REPORT 45

Location

Description

Insufficient parameter validation is observed in the indicated locations:

In the skim function within the SkimStrategy contract, no validation is performed for

the receiver parameter. For example, it is possible to pass a zero address to receive

tokens.

In the constructor of the StrategyPendleBase contract:

It is possible to set a market that has already reached maturity and will cause the

market.isExpired function to return true . In such cases, initializing the strategy

with such a market becomes meaningless.

The rewardAssets array may contain duplicate addresses or zero addresses. This

also applies to the setRewardAssets setter function.

The slippage variable is not validated and can take any value, including those

greater than 100%, which would lead to an underflow during validation in the

_validateRate function.

W-07

Insufficient Parameter Validation in FarmDispatcher ,

MorphoVault , SkimStrategy , StrategyGenericPoo

l , StrategyPendleBase

Severity WARNING

Status • FIXED

File Location Line

 contract FarmDispatcher > function _initialize 33

 contract FarmDispatcher > function addStrategy 121

 contract StrategyGenericPool > constructor 60

 contract MorphoVault > function setRewardAssets 40

 contract StrategyPendleBase > constructor 59

 contract StrategyPendleBase > constructor 61

 contract StrategyPendleBase > constructor 62

 contract StrategyPendleBase > function setRewardAssets 71

 contract SkimStrategy > function skim 37

FarmDispatcher.sol

FarmDispatcher.sol

StrategyGenericPool.sol

MorphoVault.sol

StrategyPendleBase.sol

StrategyPendleBase.sol

StrategyPendleBase.sol

StrategyPendleBase.sol

SkimStrategy.sol

◦

◦

◦

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L33
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L121
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/convex/StrategyGenericPool.sol#L60
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/morpho/MorphoVault.sol#L40
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol#L59
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol#L61
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol#L62
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol#L71
https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/SkimStrategy.sol#L37

fINDINgS REPORT 46

In the constructor of the MorphoVault contract, the rewardAssets array may contain

duplicate addresses or zero addresses. The same issue applies to the setRewardAssets

setter function.

In the _initialize function of the FarmDispatcher contract, parameters are not

validated during contract initialization. For instance, it is possible to pass a zero address

as the admin .

In the constructor of the StrategyGenericPool contract, it is possible to set a

curvePool that does not support the specified farmAsset for the strategy.

In the addStrategy function of the FarmDispatcher contract, there is no validation of

the strategy's address being added. For example, the strategy might have a different

farmDispatcher set. In such cases, the strategy will fail the onlyDispatcher check for

functions such as deposit , withdraw , and emergencySwap .

Recommendation

We recommend adding parameter validations in the specified locations.

Update

Fixed at c59a9700247e2a24271b527204f1314b5c63ba14

Client's response

These are partially addressed. Exceptions are:

Where adding the validation would require looping over an array (which we believe to be

unnecessary for admin functions)

Checking curvePool if it supports the farmAsset - this may be added later

https://github.com/altitude-fi/altitude-v2/blob/c59a9700247e2a24271b527204f1314b5c63ba14
https://github.com/altitude-fi/altitude-v2/blob/c59a9700247e2a24271b527204f1314b5c63ba14

fINDINgS REPORT 47

Location

Description

In the _withdraw function of the FarmBufferDispatcher contract, when withdrawing

funds from strategies, the buffer is filled if it is not full and if there are sufficient funds

available. In this case, only the amount remaining after filling the buffer is returned as the

withdrawal result:

function _withdraw(uint256 amountRequested) internal override returns (uint256

amountWithdrawn) {

 uint256 bufferCapacity = farmBuffer.capacity();

 if (amountRequested > bufferCapacity || bufferCapacity >= balance()) {

 amountWithdrawn = super._withdraw(amountRequested + farmBuffer.capacityMissing());

 amountWithdrawn = _fillBuffer(amountWithdrawn);

However, when withdrawing from strategies, it is possible to withdraw less than requested.

For example, this might occur:

as a result of a loss in the strategy,

due to the inEmergency mode,

because of an error in the strategy that triggers a revert , which is caught by the

try-catch structure in the dispatcher.

Despite this, the buffer will still be filled first, and only the remainder after filling the buffer

will be returned as the withdrawal result.

W-08

A portion of user funds may remain in the buffer, which

can impact farmLoss in the case of a SupplyLoss in

FarmBufferDispatcher

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract FarmBufferDispatcher > function _withdraw 41FarmBufferDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBufferDispatcher.sol#L41

fINDINgS REPORT 48

This behavior means, for instance, that in the case of farmLoss , the loss will primarily be

covered by the users' funds rather than the buffer.

Recommendation

We recommend reviewing the logic of buffer management. Instead of filling the buffer after

withdrawing funds from strategies, funds should first be drawn from the buffer, and only

then from the strategies.

Update

Client's response

This behaviour is as designed for the following reasons:

The buffer is pre-filled, therefore we don't consider these user funds

For this reason we prioritise the buffer over user withdraws/claims

It's probably easiest to look at a few different scenarios to outline the behaviour:

If we model out the behaviour in each of these cases we get the following:

Case A B C D E

Request can be fulfilled from buffer Yes No Yes No Yes

Farm has funds to fully refill the buffer Yes Yes Yes No No

Farm has funds to refill buffer & satisfy user request Yes Yes No No No

Item A B C D E

size 100 100 100 100 100

requested 30 30 30 30 30

START

capacityRemaining 50 20 50 20 90

dispatcher.balance() 150 120 20 0 0

strategy.balance() 200 200 70 70 0

RESULT * * *

capacity 20 100 100 90 90

dispatcher.balance() 120 90 0 0 0

strategy.balance() 200 90 0 0 0

fINDINgS REPORT 49

[*] In the above, the withdraw in scenario C, D, and E will revert unless dropThreshold is

set to 100% on the farm strategy (or a harvest is run to recognise the losses)

In normal behaviour, scenarios A and B are the commonly triggered scenarios. Although in

some edge-cases (e.g. when a significant farmLoss is present), this can result in a 0 value

withdraw from the farmDispatcher, this behaviour is unlikely due to:

Operationally, the buffer would typically be much smaller than the deposits into the

farm dispatcher. Equally, there are likely multiple strategies active, meaning that an issue

with a single strategy is not likely to trigger this issue.

Should a farmLoss happen, then the dropThreshold parameter will typically prevent

the withdraw from occurring in the first place (at least until these losses can be formally

recognised through a harvest).

As there is no identified risk of exploit, we have decided to not change this behaviour at this

point.

Item A B C D E

received 30 30 20 0 0

fINDINgS REPORT 50

Location

Description

In the setStrategyMax function of the FarmDispatcher contract, when a newMax value

smaller than the current strategy balance is being set, a withdrawal is performed from the

strategy. However, there is no verification to ensure that the intended amount has actually

been withdrawn.

IFarmStrategy(strategyAddress).withdraw(withdrawAmount);

strategy.totalDeposit = newMax;

However, in certain cases, the actual amount withdrawn from the strategy may be less than

requested.

For example, assuming that the strategy is in inEmergency = true mode, the call to

IFarmStrategy(strategyAddress).withdraw(withdrawAmount) would not withdraw any

funds but would not throw an error either. Thus, excess funds would remain in the strategy

balance even though they should have been withdrawn.

Recommendation

We recommend adding a verification step to ensure that the requested funds have actually

been withdrawn to prevent inconsistencies between the contract's tracked balances and the

actual funds on the strategy.

Update

Client's response

This is working as designed. strategy.totalDeposit() and strategy.balance() are intentionally

different to prevent costly dust transactions being made into one or more strategies.

W-09
Missing Check for actual withdrawal amount from

strategy in FarmDispatcher

Severity WARNING

Status • NO ISSUE

File Location Line

 contract FarmDispatcher > function setStrategyMax 97FarmDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L97

fINDINgS REPORT 51

3.4 INfO

Location

Description

In the function liquidateUsers of the LiquidatableManager contract, user liquidations

are conducted in a loop. After this, the following check is performed:

if (

 liquidatedUsers < liquidatableStorage.minUsersToLiquidate &&

 totalRepayAmount < liquidatableStorage.minRepayAmount

) {

 revert LQ_V1_LIQUIDATION_CONSTRAINTS();

}

As a result, under certain conditions where only a small number of users in the system have

unhealthy positions, liquidation cannot take place due to this condition, leading to

unnecessary gas expenditure for the liquidator.

Recommendation

We recommend exploring optimization options or providing the liquidator with the ability to

specify the values of minUsersToLiquidate and minRepayAmount .

Update

Fixed at e4a982d6fc3215dec146c1f5d1419cb8f76483fc

I-01 Non-optimal gas usage in LiquidatableManager

Severity INFO

Status • FIXED

File Location Line

 contract LiquidatableManager > function liquidateUsers 95LiquidatableManager.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol#L95
https://github.com/altitude-fi/altitude-v2/blob/e4a982d6fc3215dec146c1f5d1419cb8f76483fc
https://github.com/altitude-fi/altitude-v2/blob/e4a982d6fc3215dec146c1f5d1419cb8f76483fc

fINDINgS REPORT 52

Client's response

We have removed the liquidation constraints

fINDINgS REPORT 53

Location

Description

In the function borrow of the LenderStrategy contract, there is no validation to ensure

that amountToTransfer is not less than the requested amount . At the same time, in

VaultCoreV1 , it is assumed that the requested amount is received.

Recommendation

We recommend adding a validation check to ensure that amountToTransfer is not less

than the requested amount .

Update

Client's response

Check that the lender is actually sending us the requested borrow tokens.

9525525b755f7f0899a766cc5755055360dd99ba

However, the fixes for this issue are being made in code that is not part of the current audit

scope, so the status for this finding has been set to ACKNOWLEDGED.

I-02
Missing validation that amountToTransfer is not less

than amount in LenderStrategy

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract LenderStrategy > function borrow 102LenderStrategy.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/lending/LenderStrategy.sol#L102
https://github.com/altitude-fi/altitude-v2/blob/9525525b755f7f0899a766cc5755055360dd99ba
https://github.com/altitude-fi/altitude-v2/blob/9525525b755f7f0899a766cc5755055360dd99ba

fINDINgS REPORT 54

Location

Description

In the StrategyPendleBase contract, there is a state variable slippage . However, it

cannot be modified after being set once during contract deployment because there is no

setter defined for it. At the same time, the variable is not immutable.

Recommendation

We recommend adding a setter for the slippage variable. Alternatively, consider defining it

as an immutable variable.

Update

Fixed at 5fefd1dfe196b26392ab0f41f5bb50683536ade0

Client's response

Setter added

I-03
Setter required or make slippage immutable in Stra

tegyPendleBase

Severity INFO

Status • FIXED

File Location Line

 contract StrategyPendleBase 34StrategyPendleBase.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/pendle/StrategyPendleBase.sol#L34
https://github.com/altitude-fi/altitude-v2/blob/5fefd1dfe196b26392ab0f41f5bb50683536ade0
https://github.com/altitude-fi/altitude-v2/blob/5fefd1dfe196b26392ab0f41f5bb50683536ade0

fINDINgS REPORT 55

Location

Description

In the function decreaseCapacity of the FarmBuffer contract, there is no validation to

ensure that decrease is not equal to 0. This can result in an emitted event with a value of 0.

Recommendation

We recommend adding a validation check to ensure that decrease != 0 .

Update

Client's response

As this is a permissioned function we feel adding this would only introduce unnecessary

complexity

I-04 Missing validation for decrease != 0 in FarmBuffer

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract FarmBuffer > function decreaseCapacity 100FarmBuffer.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBuffer.sol#L100

fINDINgS REPORT 56

Location

Description

In the contract FarmBuffer , it is not possible to withdraw tokens that were mistakenly

transferred to the contract balance.

Recommendation

We recommend adding a withdraw function to remove mistakenly sent tokens.

Update

Client's response

To limit complexity we don't plan to include this. We may consider in future versions.

I-05
Unable to withdraw mistakenly sent tokens in

FarmBuffer

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract FarmBuffer 33FarmBuffer.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBuffer.sol#L33

fINDINgS REPORT 57

Location

Description

In the FarmBufferDispatcher contract, there is a typo in the following comment:

/** @notice Buffer for gas optimizaiton */

Recommendation

We recommend correcting the typo in the word "optimization."

Update

Fixed at 370591a07b0337a251b4134141bb61159f2f34ce

I-06 Typo in FarmBufferDispatcher

Severity INFO

Status • FIXED

File Location Line

 contract FarmBufferDispatcher 15FarmBufferDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBufferDispatcher.sol#L15
https://github.com/altitude-fi/altitude-v2/blob/370591a07b0337a251b4134141bb61159f2f34ce
https://github.com/altitude-fi/altitude-v2/blob/370591a07b0337a251b4134141bb61159f2f34ce

fINDINgS REPORT 58

Location

Description

In the _fillBuffer function of the FarmBufferDispatcher contract, approval is given for

the full amount , but only the required amount is used, leaving the remaining balance under

approval.

Recommendation

We recommend removing the approval after the operations are executed.

Update

Fixed at 3aea7b4d1f1e16cb9c3e29995617d11594b838b9

I-07 Incorrect approval in FarmBufferDispatcher

Severity INFO

Status • FIXED

File Location Line

 contract FarmBufferDispatcher > function _fillBuffer 97FarmBufferDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmBufferDispatcher.sol#L97
https://github.com/altitude-fi/altitude-v2/blob/3aea7b4d1f1e16cb9c3e29995617d11594b838b9
https://github.com/altitude-fi/altitude-v2/blob/3aea7b4d1f1e16cb9c3e29995617d11594b838b9

fINDINgS REPORT 59

Location

Description

In the _dispatch function of the FarmDispatcher contract, approval for the strategy

remains active if the deposit operation fails.

Recommendation

We recommend removing the approval from the strategy in the case of deposit failure.

Update

Fixed at 0597cc58559912dfb65bf01a4ba83924efd6b263

Client's response

Resets approval after dispatch

I-08
Approval remains active if deposit fails in FarmDispatc

her

Severity INFO

Status • FIXED

File Location Line

 contract FarmDispatcher > function _dispatch 242FarmDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L242
https://github.com/altitude-fi/altitude-v2/blob/0597cc58559912dfb65bf01a4ba83924efd6b263
https://github.com/altitude-fi/altitude-v2/blob/0597cc58559912dfb65bf01a4ba83924efd6b263

fINDINgS REPORT 60

Location

Description

In the setStrategyMax function of the FarmDispatcher contract, it is possible to pass a

strategyAddress with the value address(0) .

Recommendation

We recommend adding a validation to ensure that strategyAddress != 0 .

Update

Fixed at 70c3a738b3de8e263c6bf36e4b104556103ed46c

I-09
It is possible to pass strategyAddress == 0 in FarmD

ispatcher

Severity INFO

Status • FIXED

File Location Line

 contract FarmDispatcher > function setStrategyMax 89FarmDispatcher.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/FarmDispatcher.sol#L89
https://github.com/altitude-fi/altitude-v2/blob/70c3a738b3de8e263c6bf36e4b104556103ed46c
https://github.com/altitude-fi/altitude-v2/blob/70c3a738b3de8e263c6bf36e4b104556103ed46c

fINDINgS REPORT 61

Location

Description

In the SkimStrategy contract, there is no setter function for the nonSkimAssets variable.

Recommendation

We recommend adding a setter for the nonSkimAssets variable.

Update

Client's response

For security reasons we didn't include a setter, any tokens specified as non-skimmable will

remain so. If new nonSkimAssets are required to be added/removed we can relaunch the

strategy.

I-10 No Setter for nonSkimAssets in SkimStrategy

Severity INFO

Status • NO ISSUE

File Location Line

 contract SkimStrategy 36SkimStrategy.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/SkimStrategy.sol#L36

fINDINgS REPORT 62

Location

Description

In the _withdrawVaultBorrows function of the SupplyLossManager contract, there is a

typo in the word toWithdaw .

Recommendation

We recommend correcting the typo to toWithdraw .

Update

Fixed at 3a197bf001c964bcd7c6749a298cbd7e2c993551

I-11 Typo in toWithdaw in SupplyLossManager

Severity INFO

Status • FIXED

File Location Line

 contract SupplyLossManager > function _withdrawVaultBorrows 172SupplyLossManager.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossManager.sol#L172
https://github.com/altitude-fi/altitude-v2/blob/3a197bf001c964bcd7c6749a298cbd7e2c993551
https://github.com/altitude-fi/altitude-v2/blob/3a197bf001c964bcd7c6749a298cbd7e2c993551

fINDINgS REPORT 63

Location

Description

In the function recogniseRewardsInBase of the FarmStrategy contract, accumulated

rewards are sent to a separate address, rewardsRecipient , instead of the

farmDispatcher address.

Recommendation

We recommend setting the specific address of farmDispatcher as the recipient of rewards.

Update

Client's response

We are using a common pattern between the lenderStrategies and farmStrategies, by

maintaining this pattern we ensure consistency.

I-12
farmDispatcher should be used instead of

rewardsRecipient in FarmStrategy

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract FarmStrategy > function recogniseRewardsInBase 123FarmStrategy.sol

https://github.com/altitude-fi/altitude-v2/blob/c6aa8aa17293c430c55d508517bfe9e675d0e54b/contracts/strategies/farming/strategies/FarmStrategy.sol#L123

APPENDIX

4

APPENDIX 65

4.1 SECURITY ASSESSMENT

METhODOLOgY

Oxorio's smart contract security audit methodology is designed to ensure the security,

reliability, and compliance of smart contracts throughout their development lifecycle. Our

process integrates the Smart Contract Security Verification Standard (SCSVS) with our

advanced techniques to address complex security challenges. For a detailed look at our

approach, please refer to the full version of our methodology. Here is a concise overview of

our auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 66

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 67

4.2 CODEBASE QUALITY

ASSESSMENT REfERENCE

The tables below describe the codebase quality assessment categories and rating criteria

used in this report.

Category Description

Access Control

Evaluates the effectiveness of mechanisms controlling access to ensure only

authorized entities can execute specific actions, critical for maintaining

system integrity and preventing unauthorized use.

Arithmetic

Focuses on the correct implementation of arithmetic operations to prevent

vulnerabilities like overflows and underflows, ensuring that mathematical

operations are both logically and semantically accurate.

Complexity

Assesses code organization and function clarity to confirm that functions and

modules are organized for ease of understanding and maintenance, thereby

reducing unnecessary complexity and enhancing readability.

Data Validation

Assesses the robustness of input validation to prevent common

vulnerabilities like overflow, invalid addresses, and other malicious input

exploits.

Decentralization

Reviews the implementation of decentralized governance structures to

mitigate insider threats and ensure effective risk management during

contract upgrades.

Documentation

Reviews the comprehensiveness and clarity of code documentation to

ensure that it provides adequate guidance for understanding, maintaining,

and securely operating the codebase.

External

Dependencies

Evaluates the extent to which the codebase depends on external protocols,

oracles, or services. It identifies risks posed by these dependencies, such as

compromised data integrity, cascading failures, or reliance on centralized

entities. The assessment checks if these external integrations have

appropriate fallback mechanisms or redundancy to mitigate risks and

protect the protocol’s functionality.

Error Handling
Reviews the methods used to handle exceptions and errors, ensuring that

failures are managed gracefully and securely.

Logging and

Monitoring

Evaluates the use of event auditing and logging to ensure effective tracking

of critical system interactions and detect potential anomalies.

Low-Level Calls

Reviews the use of low-level constructs like inline assembly, raw call or

delegatecall , ensuring they are justified, carefully implemented, and do

not compromise contract security.

APPENDIX 68

4.2.1 Rating Criteria

Category Description

Testing and

Verification

Reviews the implementation of unit tests and integration tests to verify that

codebase has comprehensive test coverage and reliable mechanisms to

catch potential issues.

Rating Description

Excellent The system is flawless and surpasses standard industry best practices.

Good
Only minor issues were detected; overall, the system adheres to established best

practices.

Fair Issues were identified that could potentially compromise system integrity.

Poor Numerous issues were identified that compromise system integrity.

Absent A critical component is absent, severely compromising system safety.

Not

Applicable
This category does not apply to the current evaluation.

APPENDIX 69

4.3 fINDINgS CLASSIfICATION

REfERENCE

4.3.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

4.3.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 70

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding and acknowledges the associated

risks. This finding may affect the overall security of the project; however,

based on the risk assessment, the team will decide whether to address it or

leave it unchanged.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 71

4.4 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

ThANk YOU fOR ChOOSINg

	Altitude V2 Smart Contracts Security Audit Report
	Executive Summary
	Executive Summary
	Summary of findings

	Audit Overview
	Disclaimer
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Codebase Quality Assessment
	Findings Breakdown by File
	Conclusion

	Findings Report
	CRITICAL
	MAJOR
	M-01 Repeated calls draining all funds from strategies in FarmBufferDispatcher
	Location
	Description
	Recommendation
	Update
	Client's response

	M-02 Deposits allowed in strategies with inEmergency mode in FarmDispatcher
	Location
	Description
	Recommendation
	Update
	Client's response

	M-03 Incomplete withdrawals in the withdraw function in FarmDispatcher
	Location
	Description
	Recommendation
	Update
	Client's response

	M-04 Using uint256.max for full balance withdrawals may cause overflows in FarmDispatcher
	Location
	Description
	Recommendation
	Update
	Client's response

	M-05 Inability to commit earnings due to rounding errors When calculating uncommittedLossPerc in HarvestableManager
	Location
	Description
	Recommendation
	Update
	Client's response

	M-06 No supply tokens minted for portion of withdrawFee after deduction in VaultCoreV1
	Location
	Description
	Recommendation
	Update
	Client's response

	WARNING
	W-01 Farm loss at the moment of snapshot SupplyLoss is distributed proportionally to users' supply balance in CommitMath
	Location
	Description
	Recommendation
	Update
	Client's response

	W-02 Address validation confusion in _validateBorrow in VaultCoreV1
	Location
	Description
	Recommendation
	Update
	Client's response

	W-03 Inability to withdraw funds from a deactivated strategy in FarmDispatcher
	Location
	Description
	Recommendation
	Update

	W-04 Inaccurate strategy.totalDeposit calculation after withdrawal with losses in FarmDispatcher
	Location
	Description
	Recommendation
	Update
	Client's response

	W-05 Inconsistent permissions for strategy functions in FarmStrategy
	Location
	Description
	Recommendation
	Update
	Client's response

	W-06 Ability to successfully complete repay with repayAmount = 0 in VaultCoreV1
	Location
	Description
	Recommendation
	Update
	Client's response

	W-07 Insufficient Parameter Validation in FarmDispatcher, MorphoVault, SkimStrategy, StrategyGenericPool, StrategyPendleBase
	Location
	Description
	Recommendation
	Update
	Client's response

	W-08 A portion of user funds may remain in the buffer, which can impact farmLoss in the case of a SupplyLoss in FarmBufferDispatcher
	Location
	Description
	Recommendation
	Update
	Client's response

	W-09 Missing Check for actual withdrawal amount from strategy in FarmDispatcher
	Location
	Description
	Recommendation
	Update
	Client's response

	INFO
	I-01 Non-optimal gas usage in LiquidatableManager
	Location
	Description
	Recommendation
	Update
	Client's response

	I-02 Missing validation that amountToTransfer is not less than amount in LenderStrategy
	Location
	Description
	Recommendation
	Update
	Client's response

	I-03 Setter required or make slippage immutable in StrategyPendleBase
	Location
	Description
	Recommendation
	Update
	Client's response

	I-04 Missing validation for decrease != 0 in FarmBuffer
	Location
	Description
	Recommendation
	Update
	Client's response

	I-05 Unable to withdraw mistakenly sent tokens in FarmBuffer
	Location
	Description
	Recommendation
	Update
	Client's response

	I-06 Typo in FarmBufferDispatcher
	Location
	Description
	Recommendation
	Update

	I-07 Incorrect approval in FarmBufferDispatcher
	Location
	Description
	Recommendation
	Update

	I-08 Approval remains active if deposit fails in FarmDispatcher
	Location
	Description
	Recommendation
	Update
	Client's response

	I-09 It is possible to pass strategyAddress == 0 in FarmDispatcher
	Location
	Description
	Recommendation
	Update

	I-10 No Setter for nonSkimAssets in SkimStrategy
	Location
	Description
	Recommendation
	Update
	Client's response

	I-11 Typo in toWithdaw in SupplyLossManager
	Location
	Description
	Recommendation
	Update

	I-12 farmDispatcher should be used instead of rewardsRecipient in FarmStrategy
	Location
	Description
	Recommendation
	Update
	Client's response

	Appendix
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

