
SEPTEMBER 12, 2024

AAVE V3

LIQUID

EMODES

SMART

CONTRACTS

SECURITY

AUDIT REPORT

EXECUTIVE

SUMMARY1

EXECUTIVE SUMMARY 3

1.1 EXECUTIVE SUMMARY

This document presents the smart contracts security audit conducted by Oxorio for BGD

Labs’s Aave V3 Liquid eModes Update.

BGD Labs (Bored Ghosts Developing Labs) is a team of technical contributors founded by

three core members of the Aave community with extensive expertise in Aave and

decentralized finance. Their mission is to provide core development support for the Aave

ecosystem, ensuring the security and continuous innovation of the protocol while

maintaining an open and collaborative approach. BGD Labs is dedicated exclusively to Aave,

focusing on creating open-source solutions for the benefit of the Aave DAO and its

community.

The Liquid eModes update in Aave v3 introduces enhanced flexibility and precision to the

existing eMode functionality. This update allows assets to be eligible for multiple eModes,

enabling more versatile configurations while maintaining the rule that only one eMode can

be active at a time. Additionally, Liquid eModes provide granular controls for enabling or

disabling assets as collateral or borrowable within specific eModes. Key changes include the

removal of the unused eMode oracle, the introduction of bitmask-based asset

configurations, and improvements to health factor validations and governance control,

ensuring a more adaptable risk management framework.

The audit process involved a comprehensive approach, including manual code review,

automated analysis, and extensive testing and simulations of the smart contracts to assess

the project’s security and functionality. The audit covered a a changes in total of 13 smart

contracts, encompassing 2709 lines of code. The codebase was thoroughly examined, with

the audit team collaborating closely with BGD Labs and referencing the provided

documentation to address any questions regarding the expected behavior. For an in-depth

explanation of used the smart contract security audit methodology, please refer to the

Security Assessment Methodology section of this document.

Throughout the audit, a collaborative approach was maintained with BGD Labs to address

all concerns identified within the audit’s scope. Each issue has been either resolved or

formally acknowledged by BGD Labs, contributing to the robustness of the project.

As a result, following a comprehensive review, our auditors have verified that the Aave V3

Liquid eModes, as of audited commit 740d0a8163197a4948c959078258c12254207bef , has

met the security and functionality requirements established for this audit, based on the

code and documentation provided, and operates as intended within the defined scope.

https://github.com/bgd-labs/aave-v3-origin-oxorio/pull/1
https://github.com/bgd-labs/aave-v3-origin-oxorio/pull/1
https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/740d0a8163197a4948c959078258c12254207bef
https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/740d0a8163197a4948c959078258c12254207bef

EXECUTIVE SUMMARY 4

1.2 SUMMARY Of fINDINgS

The table below provides a comprehensive summary of the audit findings, categorizing each

by status and severity level. For a detailed description of the severity levels and statuses of

findings, see the Findings Classification Reference section.

Detailed technical information on the audit findings, along with our recommendations for

addressing them, is provided in the Finding Report section for further reference.

All identified issues have been addressed, with BGD Labs fixing them or formally

acknowledging their status.

Severity TOTAL NEW FIXED ACKNOWLEDGED NO ISSUE

CRITICAL 0 0 0 0 0

MAJOR 0 0 0 0 0

WARNING 3 0 1 0 2

INFO 4 0 2 1 1

TOTAL 7 0 3 1 3

AUDIT

OVERVIEW2

6

CONTENTS

1. EXECUTIVE SUMMARY ... 2

1.1. EXECUTIVE SUMMARY .. 3

1.2. SUMMARY OF FINDINGS .. 4

2. AUDIT OVERVIEW ... 5

2.1. DISCLAIMER ... 8

2.2. PROJECT BRIEF ... 9

2.3. PROJECT TIMELINE .. 10

2.4. AUDITED FILES ... 11

2.5. PROJECT OVERVIEW .. 12

2.6. FINDINGS BREAKDOWN BY FILE ... 13

2.7. CONCLUSION .. 14

3. FINDINGS REPORT ... 15

3.1. CRITICAL ... 16

3.2. MAJOR .. 17

3.3. WARNING ... 18

W-01 Possibility to modify the bitmap for non-existent emode categories in PoolConfigurator 18

W-02 A new reserve upon initialization may unintentionally be included in an emode category in

EModeConfiguration ... 20

W-03 Missing validation for the existence of asset in PoolConfigurator 23

3.4. INFO .. 25

I-01 Redundant casting to uint8 in PoolConfigurator ... 25

I-02 Unused field eModeAssetCategory in GenericLogic .. 26

I-03 Emode category id cast to uint256 in Pool .. 27

I-04 Same error description for different errors within the setEModeCategory function in

PoolConfigurator ... 28

7

4. APPENDIX ... 29

4.1. SECURITY ASSESSMENT METHODOLOGY .. 30

4.2. FINDINGS CLASSIFICATION REFERENCE ... 32

Severity Level Reference .. 32

Status Level Reference ... 32

4.3. ABOUT OXORIO ... 34

AUDIT OVERVIEW 8

2.1 DISCLAIMER

At the request of the client, Oxorio consents to the public release of this audit report. The

information contained herein is provided “as is” without any representations or warranties

of any kind. Oxorio disclaims all liability for any damages arising from or related to the use

of this audit report. Oxorio retains copyright over the contents of this report.

This report is based on the scope of materials and documentation provided to Oxorio for

the security audit as detailed in the Executive Summary and Audited Files sections. The

findings presented in this report may not encompass all potential vulnerabilities. Oxorio

delivers this report and its findings on an as-is basis, and any reliance on this report is

undertaken at the user’s sole risk. It is important to recognize that blockchain technology

remains in a developmental stage and is subject to inherent risks and flaws.

This audit does not extend beyond the programming language of smart contracts to include

areas such as the compiler layer or other components that may introduce security risks.

Consequently, this report should not be interpreted as an endorsement of any project or

team, nor does it guarantee the security of the project under review.

THE CONTENT OF THIS REPORT, INCLUDING ITS ACCESS AND/OR USE, AS WELL AS ANY

ASSOCIATED SERVICES OR MATERIALS, MUST NOT BE CONSIDERED OR RELIED UPON AS

FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER PROFESSIONAL ADVICE.

Third parties should not rely on this report for making any decisions, including the purchase

or sale of any product, service, or asset. Oxorio expressly disclaims any liability related to

the report, its contents, and any associated services, including, but not limited to, implied

warranties of merchantability, fitness for a particular purpose, and non-infringement.

Oxorio does not warrant, endorse, or take responsibility for any product or service

referenced or linked within this report.

For any decisions related to financial, legal, regulatory, or other professional advice, users

are strongly encouraged to consult with qualified professionals.

AUDIT OVERVIEW 9

2.2 PROjECT BRIEf

Title Description

Client BGD Labs

Project name Aave V3 Liquid eModes

Category Lending

Website https://aave.com/

Repository https://github.com/bgd-labs/aave-v3-origin-oxorio/

Documentation https://github.com/bgd-labs/aave-v3-origin-oxorio/pull/1

Initial Commit a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0

Final Commit 740d0a8163197a4948c959078258c12254207bef

Platform L1, L2

Languages Solidity

Lead Auditor Alexander Mazaletskiy - am@oxor.io

Project Manager Natalia Demidova - nataly@oxor.io

https://aave.com/
https://github.com/bgd-labs/aave-v3-origin-oxorio/
https://github.com/bgd-labs/aave-v3-origin-oxorio/pull/1
https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0
https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0
https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/740d0a8163197a4948c959078258c12254207bef
https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/740d0a8163197a4948c959078258c12254207bef
mailto:am@oxor.io
mailto:nataly@oxor.io

AUDIT OVERVIEW 10

2.3 PROjECT TIMELINE

The key events and milestones of the project are outlined below.

Date Event

August 26, 2024 Client engaged Oxorio requesting an audit.

September 3, 2024 The audit team initiated work on the project.

September 3, 2024 A project kickoff call was conducted between the audit team and the client.

September 11, 2024 Submission of the comprehensive audit report.

September 12, 2024 Client's feedback on the report was received.

September 12, 2024 The audit team commenced work on a re-audit of the project.

September 12, 2024 Submission of the final audit report incorporating client’s verified fixes.

AUDIT OVERVIEW 11

2.4 AUDITED fILES

The following table contains a list of the audited files. An audit of all changes in these files

starting from commit 2b4315794a004ffc4ea44d283d92a66f18368439 was conducted. The

scc tool was used to count the number of lines and assess complexity of the files.

Lines: The total number of lines in each file. This provides a quick overview of the file size

and its contents.

Blanks: The count of blank lines in the file.

Comments: This column shows the number of lines that are comments.

Code: The count of lines that actually contain executable code. This metric is essential for

understanding how much of the file is dedicated to operational elements rather than

comments or whitespace.

Complexity: This column shows the file complexity per line of code. It is calculated by

dividing the file's total complexity (an approximation of cyclomatic complexity that

estimates logical depth and decision points like loops and conditional branches) by the

number of executable lines of code. A higher value suggests greater complexity per line,

indicating areas with concentrated logic.

File Lines Blanks Comments Code Complexity

1 src/contracts/helpers/AaveProtocolDataProvider.sol 295 37 34 224 4

2 src/contracts/interfaces/IPoolConfigurator.sol 551 63 360 128 0

3 src/contracts/interfaces/IPoolDataProvider.sol 250 22 137 91 0

4 src/contracts/protocol/libraries/configuration/EModeConfiguration.sol 83 5 30 48 21

5 src/contracts/protocol/libraries/configuration/ReserveConfiguration.sol 583 57 224 302 4

6 src/contracts/protocol/libraries/helpers/Errors.sol 103 1 6 96 0

7 src/contracts/protocol/libraries/logic/ConfiguratorLogic.sol 223 28 39 156 1

8 src/contracts/protocol/libraries/logic/EModeLogic.sol 70 6 18 46 13

9 src/contracts/protocol/libraries/logic/GenericLogic.sol 257 29 51 177 19

10 src/contracts/protocol/libraries/logic/LiquidationLogic.sol 460 47 90 323 8

11 src/contracts/protocol/libraries/logic/ValidationLogic.sol 642 65 133 444 16

12 src/contracts/protocol/libraries/types/DataTypes.sol 300 23 64 213 0

13 src/contracts/protocol/pool/PoolConfigurator.sol 621 91 69 461 8

Total 4438 474 1255 2709 8

https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/2b4315794a004ffc4ea44d283d92a66f18368439
https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/2b4315794a004ffc4ea44d283d92a66f18368439
https://github.com/boyter/scc
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/helpers/AaveProtocolDataProvider.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/interfaces/IPoolConfigurator.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/interfaces/IPoolDataProvider.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/configuration/EModeConfiguration.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/configuration/ReserveConfiguration.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/helpers/Errors.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/logic/ConfiguratorLogic.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/logic/EModeLogic.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/logic/GenericLogic.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/logic/LiquidationLogic.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/logic/ValidationLogic.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/types/DataTypes.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol
https://en.wikipedia.org/wiki/Cyclomatic_complexity

AUDIT OVERVIEW 12

2.5 PROjECT OVERVIEW

The Liquid eModes update for Aave v3 enhances the flexibility and granularity of the

existing eMode feature. Originally, eModes allowed users to group correlated assets with

higher-risk configurations but limited assets to a single eMode. Liquid eModes now enable

assets to belong to multiple eModes, providing more dynamic use cases. Users can still only

activate one eMode at a time, but new features allow for more detailed configuration, such

as enabling or disabling specific assets for collateral or borrowing within an eMode.

Key changes include the removal of the unused eMode oracle to save gas, and the

introduction of bitmask configurations to specify which assets can be borrowed or used as

collateral in each eMode. Assets must be borrowable or collateralizable both in and outside

eMode. Additionally, the update ensures that health factors are validated during eMode

switches and enhances the PoolConfigurator methods. Breaking changes include the

removal of certain legacy methods and the introduction of new event types for tracking

asset changes in eModes. Overall, these modifications improve flexibility and governance

control over asset risk configurations.

AUDIT OVERVIEW 13

2.6 fINDINgS BREAkDOWN BY

fILE

This table provides an overview of the findings across the audited files, categorized by

severity level. It serves as a useful tool for identifying areas that may require attention,

helping to prioritize remediation efforts, and provides a clear summary of the audit results.

File TOTAL CRITICAL MAJOR WARNING INFO

src/contracts/protocol/pool/PoolConfigurator.sol 4 0 0 2 2

src/contracts/protocol/libraries/configuration/EModeConfiguration.sol 1 0 0 1 0

src/contracts/protocol/libraries/logic/GenericLogic.sol 1 0 0 0 1

src/contracts/protocol/pool/Pool.sol 1 0 0 0 1

https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/configuration/EModeConfiguration.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/logic/GenericLogic.sol
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/Pool.sol

AUDIT OVERVIEW 14

2.7 CONCLUSION

A comprehensive audit was conducted on 13 smart contracts, initially revealing 3 warning

issues, along with numerous informational notes. The audit identified issues related to the

unintended inclusion of new reserves in eMode categories, missing asset validation in

PoolConfigurator , and the possibility of modifying bitmaps for non-existent eMode

categories, along with minor concerns like redundant castings and inconsistent error

descriptions.

Following our initial audit, BGD Labs worked closely with our team to address the identified

issues. The proposed changes focus on improving eMode category management, ensuring

proper asset validation and configuration, and enhancing code clarity and efficiency. These

recommendations aim to prevent unintended reserve inclusions, enforce accurate asset

assignment in eModes, and provide clearer documentation. Through multiple rounds of

interaction, all identified issues have been successfully addressed or formally

acknowledged.

As a result, the project has passed our audit. Our auditors have verified that the Aave V3

Liquid eModes, as of audited commit 740d0a8163197a4948c959078258c12254207bef ,

operates as intended within the defined scope, based on the information and code provided

at the time of evaluation. The robustness of the codebase has been significantly improved,

meeting the necessary security and functionality requirements established for this audit.

https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/740d0a8163197a4948c959078258c12254207bef
https://github.com/bgd-labs/aave-v3-origin-oxorio/commit/740d0a8163197a4948c959078258c12254207bef

fINDINgS

REPORT3

fINDINgS REPORT 16

3.1 CRITICAL

No critical issues found.

fINDINgS REPORT 17

3.2 MAjOR

No major issues found.

fINDINgS REPORT 18

3.3 WARNINg

Location

Description

In the mentioned locations, it is possible to add an asset to an emode category as

"borrowable" or "collateral" by specifying the categoryId . While categoryId cannot be set

to 0 due to a check inside the configureEModeCategory function, there are no checks to

verify if the category with the specified categoryId actually exists.

This allows an asset to be added to a non-existent category, which could later become

active.

Recommendation

We recommend considering this issue during the preparation of the eModes configuration

update. Alternatively, validation can be added to not only check for non-zero values but also

verify the existence of the categoryId to prevent populating the _eModeCategories

mapping with non-existent categories, which could cause issues in the future.

Update

Client's response

According to the documentation:

W-01
Possibility to modify the bitmap for non-existent emode

categories in PoolConfigurator

Severity WARNING

Status • NO ISSUE

File Location Line

 contract PoolConfigurator > function setAssetCollateralInEMode 418

 contract PoolConfigurator > function setAssetBorrowableInEMode 431

PoolConfigurator.sol

PoolConfigurator.sol

https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L418
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L431

fINDINgS REPORT 19

Note: The methods to alter configuration do not validate for an asset / eMode to exist.

This is to stay consistent with the current methods on PoolConfigurator, as there are

multiple layers of security/risk procedures on updates to not create any issues.

The reason why we don't enforce this is that usually these updates are called trough

multiple layers of abstractions on top, so it's possible that the same transaction would add

an asset:

borrowable

collateral

creates the eMode

Enforcing existence would require us to enforce transaction order, which could create

problems.

According to our assessment, setting a non-existent eMode or even a non-existent asset

should never create any problem.

Users cannot enter an eMode that has ltv == 0 , and users cannot supply/borrow non-

existent assets.

fINDINgS REPORT 20

Location

Description

In the mentioned locations, a bit is set where the bit index corresponds to the reserve id.

This means that the reserve is included in the corresponding emode category. However,

when a reserve is dropped, the corresponding bit is not cleared from the emode category

bitmap.

Furthermore, when initializing a new reserve in the executeInitReserve function, it may

be assigned the same id as that of the removed reserve:

for (uint16 i = 0; i < params.reservesCount; i++) {

 if (reservesList[i] == address(0)) {

 reservesData[params.asset].id = i;

 reservesList[i] = params.asset;

 return false;

 }

}

As a result, the new reserve will immediately be included in the emode category right after

initialization.

Although the documentation explicitly states that dropReserve is unlikely to be ever called

and does not account for the removal of flags from eModes, in this issue we outline the

potential consequences of this decision.

Test case for the described issue:

W-02

A new reserve upon initialization may unintentionally be

included in an emode category in EModeConfiguratio

n

Severity WARNING

Status • NO ISSUE

File Location Line

 contract EModeConfiguration > function setCollateral 20

 contract EModeConfiguration > function setBorrowable 55

EModeConfiguration.sol

EModeConfiguration.sol

https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/configuration/EModeConfiguration.sol#L20
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/configuration/EModeConfiguration.sol#L55

fINDINgS REPORT 21

// in the "PoolConfigurator.eMode.sol" file

import {ConfiguratorInputTypes} from '../../../../src/contracts/protocol/pool/

PoolConfigurator.sol';

import {TestVars} from '../../../utils/TestnetProcedures.sol';

// ...

function test_unchangedReserveIdInBitmap(TestVars memory t) public {

 // copy from test_setAssetCollateralInEMode()

 EModeCategoryInput memory input = _genCategoryOne();

 test_configureEmodeCategory();

 vm.expectEmit(address(contracts.poolConfiguratorProxy));

 emit AssetCollateralInEModeChanged(tokenList.usdx, input.id, true);

 vm.prank(poolAdmin);

 contracts.poolConfiguratorProxy.setAssetCollateralInEMode(tokenList.usdx, input.id, true);

 DataTypes.EModeCategory memory config = contracts.poolProxy.getEModeCategoryData(input.id);

 DataTypes.ReserveDataLegacy memory usdxReserveData = contracts.poolProxy.getReserveData(

 tokenList.usdx

);

 assertEq(EModeConfiguration.isCollateralAsset(config.isCollateralBitmap,

usdxReserveData.id), true);

 // drop the USDX reserve

 vm.prank(poolAdmin);

 contracts.poolConfiguratorProxy.dropReserve(tokenList.usdx);

 // init the new reserve

 ConfiguratorInputTypes.InitReserveInput[] memory initInput = _generateInitConfig(

 t,

 report,

 poolAdmin,

 true

);

 vm.prank(poolAdmin);

 contracts.poolConfiguratorProxy.initReserves(initInput);

 // check that the new reserve has the same id as dropped USDX and

 // is already in EMode right after initialization

 DataTypes.ReserveDataLegacy memory newReserveData = contracts.poolProxy.getReserveData(

 initInput[0].underlyingAsset

);

 assertEq(usdxReserveData.id, newReserveData.id);

 assertEq(EModeConfiguration.isCollateralAsset(config.isCollateralBitmap,

fINDINgS REPORT 22

newReserveData.id), true);

}

Recommendation

We recommend implementing the clearing of the corresponding bits from the

isCollateralBitmap and isBorrowableBitmap in the eMode category configuration when

removing an asset to avoid the unintended inclusion of a new asset in the eMode category.

Update

Client's response

According to the documentation:

Note: dropReserve does not account for removal of flags from eModes.

The rationale for this is the following:

- even if a reserve is dropped and the flags persist, the system should behave perfectly

fine given as for dropping the supply is enforced to be zero

This is expected behavior. Of course, when reusing that slot, one needs to act with caution.

fINDINgS REPORT 23

Location

Description

The functions setAssetCollateralInEMode and setAssetBorrowableInEMode do not

validate whether the specified asset exists in the reserve. As a result, if a non-existent

asset is passed, the system may inadvertently add an asset with reserveData.index = 0

to the category in the bitmaps isCollateralBitmap or isBorrowableBitmap . On

Ethereum Mainnet, this index corresponds to WETH , meaning WETH could unintentionally be

added to an eMode category, potentially causing unexpected behavior or security issues.

In other functions of PoolConfigurator , asset existence is validated in the

_pool.setConfiguration method, which was also previously present in the

setAssetEModeCategory function but was removed as part of the audited codebase

changes.

The events AssetCollateralInEModeChanged and AssetBorrowableInEModeChanged

misleadingly suggest that the asset parameter was correctly assigned to the specified

categoryId . This could result in unintended consequences if invalid assets are configured

without proper validation.

Recommendation

We recommend implementing a validation check to ensure that the asset exists in the

reserve before proceeding with the configuration changes. This can be achieved similarly to

the setConfiguration function in the Pool contract:

require(_reserves[asset].id != 0 || _reservesList[0] == asset, Errors.ASSET_NOT_LISTED);

W-03
Missing validation for the existence of asset in

PoolConfigurator

Severity WARNING

Status • FIXED

File Location Line

 contract PoolConfigurator > function setAssetCollateralInEMode 425

 contract PoolConfigurator > function setAssetBorrowableInEMode 438

PoolConfigurator.sol

PoolConfigurator.sol

https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L425
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L438

fINDINgS REPORT 24

Update

Fixed in commit 27418752340b4b78729761aea72f29c09b9b265b .

Client's response

In the docs we exactly state that that we don't validate this because there's system built

around protecting against misusage. But we acknowledge that the validation in this case is

an improvement without drawbacks.

https://github.com/bgd-labs/aave-v3-origin-oxorio/commits/27418752340b4b78729761aea72f29c09b9b265b
https://github.com/bgd-labs/aave-v3-origin-oxorio/commits/27418752340b4b78729761aea72f29c09b9b265b

fINDINgS REPORT 25

3.4 INfO

Location

Description

In the mentioned locations, the type uint8 is assigned to variables that are already of type

uint8 , leading to reduced code readability and additional gas costs.

Recommendation

We recommend removing excessive casting of variables to the uint8 type.

Update

Fixed in commit 477d9edd80adf50b13a1b476dcc543e4233ab9ad .

I-01 Redundant casting to uint8 in PoolConfigurator

Severity INFO

Status • FIXED

File Location Line

 contract PoolConfigurator > function setAssetCollateralInEMode 427PoolConfigurator.sol

https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L427
https://github.com/bgd-labs/aave-v3-origin-oxorio/commits/477d9edd80adf50b13a1b476dcc543e4233ab9ad
https://github.com/bgd-labs/aave-v3-origin-oxorio/commits/477d9edd80adf50b13a1b476dcc543e4233ab9ad

fINDINgS REPORT 26

Location

Description

In the struct CalculateUserAccountDataVars of contract GenericLogic , the field

eModeAssetCategory is not used anywhere in a current codebase.

Recommendation

We recommend removing the field eModeAssetCategory from the struct

CalculateUserAccountDataVars .

Update

Fixed in commit 9a72720ad12ff38e3c957cbef3e1e1a05ffb2095 .

I-02 Unused field eModeAssetCategory in GenericLogic

Severity INFO

Status • FIXED

File Location Line

 contract GenericLogic > struct CalculateUserAccountDataVars 43GenericLogic.sol

https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/libraries/logic/GenericLogic.sol#L43
https://github.com/bgd-labs/aave-v3-origin-oxorio/commits/9a72720ad12ff38e3c957cbef3e1e1a05ffb2095
https://github.com/bgd-labs/aave-v3-origin-oxorio/commits/9a72720ad12ff38e3c957cbef3e1e1a05ffb2095

fINDINgS REPORT 27

Location

Description

In the getUserEMode function of the Pool contract, the return value for the emode

category id is cast to type uint256 :

function getUserEMode(address user) external view virtual override returns (uint256) {

 return _usersEModeCategory[user];

}

However, the category id is of type uint8 .

Recommendation

We recommend changing the return type of the function to uint8 , which corresponds to

the type of the emode category id.

Update

Client's response

This can not be changed without causing issues on 3th party integrations.

I-03 Emode category id cast to uint256 in Pool

Severity INFO

Status • NO ISSUE

File Location Line

 contract Pool > function getUserEMode 720Pool.sol

https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/Pool.sol#L720

fINDINgS REPORT 28

Location

Description

In the mentioned locations, the same constant Errors.INVALID_EMODE_CATEGORY_PARAMS

is used as a reference for describing different errors. This could mislead users, as the

explanation will not be accurate.

Recommendation

We recommend using distinct error descriptions for different errors to simplify

troubleshooting and help identify the specific cause of the issue.

Update

Client's response

We will not change this, as it's done in multiple places in the aave codebase and we don't

consider the improvement big enough to propose the change.

I-04
Same error description for different errors within the s

etEModeCategory function in PoolConfigurator

Severity INFO

Status • ACKNOWLEDGED

File Location Line

 contract PoolConfigurator > function setEModeCategory 380

 contract PoolConfigurator > function setEModeCategory 386

 contract PoolConfigurator > function setEModeCategory 389

 contract PoolConfigurator > function setEModeCategory 397

PoolConfigurator.sol

PoolConfigurator.sol

PoolConfigurator.sol

PoolConfigurator.sol

https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L380
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L386
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L389
https://github.com/bgd-labs/aave-v3-origin-oxorio/blob/a4849111a0ce57e3af1ca5cd9a9b8c6a8cdad1e0/src/contracts/protocol/pool/PoolConfigurator.sol#L397

APPENDIX

4

APPENDIX 30

4.1 SECURITY ASSESSMENT

METhODOLOgY

Oxorio's smart contract security audit methodology is designed to ensure the security,

reliability, and compliance of smart contracts throughout their development lifecycle. Our

process integrates the Smart Contract Security Verification Standard (SCSVS) with our

advanced techniques to address complex security challenges. For a detailed look at our

approach, please refer to the full version of our methodology. Here is a concise overview of

our auditing process:

1. Project Architecture Review

All necessary information about the smart contract is gathered, including its intended

functionality and dependencies. This stage sets the foundation by reviewing documentation,

business logic, and initial code analysis.

2. Vulnerability Assessment

This phase involves a deep dive into the smart contract's code to identify security

vulnerabilities. Rigorous testing and review processes are applied to ensure robustness

against potential attacks.

This stage is focused on identifying specific vulnerabilities within the smart contract code. It

involves scanning and testing the code for known security weaknesses and patterns that

could potentially be exploited by malicious actors.

3. Security Model Evaluation

The smart contract’s architecture is assessed to ensure it aligns with security best practices

and does not introduce potential vulnerabilities. This includes reviewing how the contract

integrates with external systems, its compliance with security best practices, and whether

the overall design supports a secure operational environment.

This phase involves a analysis of the project's documentation, the consistency of business

logic as documented versus implemented in the code, and any assumptions made during

the design and development phases. It assesses if the contract's architectural design

adequately addresses potential threats and integrates necessary security controls.

4. Cross-Verification by Multiple Auditors

Typically, the project is assessed by multiple auditors to ensure a diverse range of insights

and thorough coverage. Findings from individual auditors are cross-checked to verify

accuracy and completeness.

5. Report Consolidation

https://docsend.com/view/yjpj6jggbqjpc5sa

APPENDIX 31

Findings from all auditors are consolidated into a single, comprehensive audit report. This

report outlines potential vulnerabilities, areas for improvement, and an overall assessment

of the smart contract’s security posture.

6. Reaudit of Revised Submissions

Post-review modifications made by the client are reassessed to ensure that all previously

identified issues have been adequately addressed. This stage helps validate the

effectiveness of the fixes applied.

7. Final Audit Report Publication

The final version of the audit report is delivered to the client and published on Oxorio's

official website. This report includes detailed findings, recommendations for improvement,

and an executive summary of the smart contract’s security status.

APPENDIX 32

4.2 fINDINgS CLASSIfICATION

REfERENCE

4.2.1 Severity Level Reference

The following severity levels were assigned to the issues described in the report:

4.2.2 Status Level Reference

Based on the feedback received from the client's team regarding the list of findings

discovered by the contractor, the following statuses were assigned to the findings:

Title Description

CRITICAL

Issues that pose immediate and significant risks, potentially leading to asset theft,

inaccessible funds, unauthorized transactions, or other substantial financial losses.

These vulnerabilities represent serious flaws that could be exploited to compromise

or control the entire contract. They require immediate attention and remediation to

secure the system and prevent further exploitation.

MAJOR

Issues that could cause a significant failure in the contract's functionality, potentially

necessitating manual intervention to modify or replace the contract. These

vulnerabilities may result in data corruption, malfunctioning logic, or prolonged

downtime, requiring substantial operational changes to restore normal performance.

While these issues do not immediately lead to financial losses, they compromise the

reliability and security of the contract, demanding prioritized attention and

remediation.

WARNING

Issues that might disrupt the contract's intended logic, affecting its correct

functioning or making it vulnerable to Denial of Service (DDoS) attacks. These

problems may result in the unintended triggering of conditions, edge cases, or

interactions that could degrade the user experience or impede specific operations.

While they do not pose immediate critical risks, they could impact contract reliability

and require attention to prevent future vulnerabilities or disruptions.

INFO

Issues that do not impact the security of the project but are reported to the client's

team for improvement. They include recommendations related to code quality, gas

optimization, and other minor adjustments that could enhance the project's overall

performance and maintainability.

Title Description

NEW Waiting for the project team's feedback.

APPENDIX 33

Title Description

FIXED
Recommended fixes have been applied to the project code and the identified

issue no longer affects the project's security.

ACKNOWLEDGED

The project team is aware of this finding and acknowledges the associated

risks. This finding may affect the overall security of the project; however,

based on the risk assessment, the team will decide whether to address it or

leave it unchanged.

NO ISSUE
Finding does not affect the overall security of the project and does not violate

the logic of its work.

APPENDIX 34

4.3 ABOUT OXORIO

OXORIO is a blockchain security firm that specializes in smart contracts, zk-SNARK solutions,

and security consulting. With a decade of blockchain development and five years in smart

contract auditing, our expert team delivers premier security services for projects at any

stage of maturity and development.

Since 2021, we've conducted key security audits for notable DeFi projects like Lido, 1Inch,

Rarible, and deBridge, prioritizing excellence and long-term client relationships. Our co-

founders, recognized by the Ethereum and Web3 Foundations, lead our continuous

research to address new threats in the blockchain industry. Committed to the industry's

trust and advancement, we contribute significantly to security standards and practices

through our research and education work.

Our contacts:

oxor.io

ping@oxor.io

Github

Linkedin

Twitter

https://oxor.io
mailto:ping@oxor.io
https://github.com/oxor-io
https://linkedin.com/company/0xorio
https://twitter.com/0xorio

ThANk YOU fOR ChOOSINg

	Aave V3 Liquid eModes Smart Contracts Security Audit Report
	Executive Summary
	Executive Summary
	Summary of findings

	Audit Overview
	Disclaimer
	Project Brief
	Project Timeline
	Audited Files
	Project Overview
	Findings Breakdown by File
	Conclusion

	Findings Report
	CRITICAL
	MAJOR
	WARNING
	W-01 Possibility to modify the bitmap for non-existent emode categories in PoolConfigurator
	Location
	Description
	Recommendation
	Update
	Client's response

	W-02 A new reserve upon initialization may unintentionally be included in an emode category in EModeConfiguration
	Location
	Description
	Recommendation
	Update
	Client's response

	W-03 Missing validation for the existence of asset in PoolConfigurator
	Location
	Description
	Recommendation
	Update
	Client's response

	INFO
	I-01 Redundant casting to uint8 in PoolConfigurator
	Location
	Description
	Recommendation
	Update

	I-02 Unused field eModeAssetCategory in GenericLogic
	Location
	Description
	Recommendation
	Update

	I-03 Emode category id cast to uint256 in Pool
	Location
	Description
	Recommendation
	Update
	Client's response

	I-04 Same error description for different errors within the setEModeCategory function in PoolConfigurator
	Location
	Description
	Recommendation
	Update
	Client's response

	Appendix
	Security Assessment Methodology
	Findings Classification Reference
	Severity Level Reference
	Status Level Reference

	About Oxorio

